MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvexfo Structured version   Visualization version   Unicode version

Theorem cbvexfo 6545
Description: Change bound variable between domain and range of function. (Contributed by NM, 23-Feb-1997.)
Hypothesis
Ref Expression
cbvfo.1  |-  ( ( F `  x )  =  y  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
cbvexfo  |-  ( F : A -onto-> B  -> 
( E. x  e.  A  ph  <->  E. y  e.  B  ps )
)
Distinct variable groups:    x, y, A    y, B    x, F, y    ph, y    ps, x
Allowed substitution hints:    ph( x)    ps( y)    B( x)

Proof of Theorem cbvexfo
StepHypRef Expression
1 cbvfo.1 . . . . 5  |-  ( ( F `  x )  =  y  ->  ( ph 
<->  ps ) )
21notbid 308 . . . 4  |-  ( ( F `  x )  =  y  ->  ( -.  ph  <->  -.  ps )
)
32cbvfo 6544 . . 3  |-  ( F : A -onto-> B  -> 
( A. x  e.  A  -.  ph  <->  A. y  e.  B  -.  ps )
)
43notbid 308 . 2  |-  ( F : A -onto-> B  -> 
( -.  A. x  e.  A  -.  ph  <->  -.  A. y  e.  B  -.  ps )
)
5 dfrex2 2996 . 2  |-  ( E. x  e.  A  ph  <->  -. 
A. x  e.  A  -.  ph )
6 dfrex2 2996 . 2  |-  ( E. y  e.  B  ps  <->  -. 
A. y  e.  B  -.  ps )
74, 5, 63bitr4g 303 1  |-  ( F : A -onto-> B  -> 
( E. x  e.  A  ph  <->  E. y  e.  B  ps )
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    = wceq 1483   A.wral 2912   E.wrex 2913   -onto->wfo 5886   ` cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fo 5894  df-fv 5896
This theorem is referenced by:  f1oweALT  7152  deg1ldg  23852
  Copyright terms: Public domain W3C validator