MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  deg1ldg Structured version   Visualization version   Unicode version

Theorem deg1ldg 23852
Description: A nonzero univariate polynomial always has a nonzero leading coefficient. (Contributed by Stefan O'Rear, 23-Mar-2015.)
Hypotheses
Ref Expression
deg1z.d  |-  D  =  ( deg1  `  R )
deg1z.p  |-  P  =  (Poly1 `  R )
deg1z.z  |-  .0.  =  ( 0g `  P )
deg1nn0cl.b  |-  B  =  ( Base `  P
)
deg1ldg.y  |-  Y  =  ( 0g `  R
)
deg1ldg.a  |-  A  =  (coe1 `  F )
Assertion
Ref Expression
deg1ldg  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  F  =/= 
.0.  )  ->  ( A `  ( D `  F ) )  =/= 
Y )

Proof of Theorem deg1ldg
Dummy variables  b 
d  a  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 deg1z.d . . . 4  |-  D  =  ( deg1  `  R )
21deg1fval 23840 . . 3  |-  D  =  ( 1o mDeg  R )
3 eqid 2622 . . 3  |-  ( 1o mPoly  R )  =  ( 1o mPoly  R )
4 deg1z.p . . . 4  |-  P  =  (Poly1 `  R )
5 eqid 2622 . . . 4  |-  (PwSer1 `  R
)  =  (PwSer1 `  R
)
6 deg1nn0cl.b . . . 4  |-  B  =  ( Base `  P
)
74, 5, 6ply1bas 19565 . . 3  |-  B  =  ( Base `  ( 1o mPoly  R ) )
8 deg1ldg.y . . 3  |-  Y  =  ( 0g `  R
)
9 psr1baslem 19555 . . 3  |-  ( NN0 
^m  1o )  =  { c  e.  ( NN0  ^m  1o )  |  ( `' c
" NN )  e. 
Fin }
10 tdeglem2 23821 . . 3  |-  ( a  e.  ( NN0  ^m  1o )  |->  ( a `
 (/) ) )  =  ( a  e.  ( NN0  ^m  1o ) 
|->  (fld 
gsumg  a ) )
11 deg1z.z . . . 4  |-  .0.  =  ( 0g `  P )
123, 4, 11ply1mpl0 19625 . . 3  |-  .0.  =  ( 0g `  ( 1o mPoly  R ) )
132, 3, 7, 8, 9, 10, 12mdegldg 23826 . 2  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  F  =/= 
.0.  )  ->  E. b  e.  ( NN0  ^m  1o ) ( ( F `
 b )  =/= 
Y  /\  ( (
a  e.  ( NN0 
^m  1o )  |->  ( a `  (/) ) ) `
 b )  =  ( D `  F
) ) )
14 deg1ldg.a . . . . . . . . . . 11  |-  A  =  (coe1 `  F )
1514fvcoe1 19577 . . . . . . . . . 10  |-  ( ( F  e.  B  /\  b  e.  ( NN0  ^m  1o ) )  -> 
( F `  b
)  =  ( A `
 ( b `  (/) ) ) )
16153ad2antl2 1224 . . . . . . . . 9  |-  ( ( ( R  e.  Ring  /\  F  e.  B  /\  F  =/=  .0.  )  /\  b  e.  ( NN0  ^m  1o ) )  -> 
( F `  b
)  =  ( A `
 ( b `  (/) ) ) )
17 fveq1 6190 . . . . . . . . . . . 12  |-  ( a  =  b  ->  (
a `  (/) )  =  ( b `  (/) ) )
18 eqid 2622 . . . . . . . . . . . 12  |-  ( a  e.  ( NN0  ^m  1o )  |->  ( a `
 (/) ) )  =  ( a  e.  ( NN0  ^m  1o ) 
|->  ( a `  (/) ) )
19 fvex 6201 . . . . . . . . . . . 12  |-  ( b `
 (/) )  e.  _V
2017, 18, 19fvmpt 6282 . . . . . . . . . . 11  |-  ( b  e.  ( NN0  ^m  1o )  ->  ( ( a  e.  ( NN0 
^m  1o )  |->  ( a `  (/) ) ) `
 b )  =  ( b `  (/) ) )
2120fveq2d 6195 . . . . . . . . . 10  |-  ( b  e.  ( NN0  ^m  1o )  ->  ( A `
 ( ( a  e.  ( NN0  ^m  1o )  |->  ( a `
 (/) ) ) `  b ) )  =  ( A `  (
b `  (/) ) ) )
2221adantl 482 . . . . . . . . 9  |-  ( ( ( R  e.  Ring  /\  F  e.  B  /\  F  =/=  .0.  )  /\  b  e.  ( NN0  ^m  1o ) )  -> 
( A `  (
( a  e.  ( NN0  ^m  1o ) 
|->  ( a `  (/) ) ) `
 b ) )  =  ( A `  ( b `  (/) ) ) )
2316, 22eqtr4d 2659 . . . . . . . 8  |-  ( ( ( R  e.  Ring  /\  F  e.  B  /\  F  =/=  .0.  )  /\  b  e.  ( NN0  ^m  1o ) )  -> 
( F `  b
)  =  ( A `
 ( ( a  e.  ( NN0  ^m  1o )  |->  ( a `
 (/) ) ) `  b ) ) )
2423neeq1d 2853 . . . . . . 7  |-  ( ( ( R  e.  Ring  /\  F  e.  B  /\  F  =/=  .0.  )  /\  b  e.  ( NN0  ^m  1o ) )  -> 
( ( F `  b )  =/=  Y  <->  ( A `  ( ( a  e.  ( NN0 
^m  1o )  |->  ( a `  (/) ) ) `
 b ) )  =/=  Y ) )
2524anbi1d 741 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  F  e.  B  /\  F  =/=  .0.  )  /\  b  e.  ( NN0  ^m  1o ) )  -> 
( ( ( F `
 b )  =/= 
Y  /\  ( (
a  e.  ( NN0 
^m  1o )  |->  ( a `  (/) ) ) `
 b )  =  ( D `  F
) )  <->  ( ( A `  ( (
a  e.  ( NN0 
^m  1o )  |->  ( a `  (/) ) ) `
 b ) )  =/=  Y  /\  (
( a  e.  ( NN0  ^m  1o ) 
|->  ( a `  (/) ) ) `
 b )  =  ( D `  F
) ) ) )
26 ancom 466 . . . . . 6  |-  ( ( ( A `  (
( a  e.  ( NN0  ^m  1o ) 
|->  ( a `  (/) ) ) `
 b ) )  =/=  Y  /\  (
( a  e.  ( NN0  ^m  1o ) 
|->  ( a `  (/) ) ) `
 b )  =  ( D `  F
) )  <->  ( (
( a  e.  ( NN0  ^m  1o ) 
|->  ( a `  (/) ) ) `
 b )  =  ( D `  F
)  /\  ( A `  ( ( a  e.  ( NN0  ^m  1o )  |->  ( a `  (/) ) ) `  b
) )  =/=  Y
) )
2725, 26syl6bb 276 . . . . 5  |-  ( ( ( R  e.  Ring  /\  F  e.  B  /\  F  =/=  .0.  )  /\  b  e.  ( NN0  ^m  1o ) )  -> 
( ( ( F `
 b )  =/= 
Y  /\  ( (
a  e.  ( NN0 
^m  1o )  |->  ( a `  (/) ) ) `
 b )  =  ( D `  F
) )  <->  ( (
( a  e.  ( NN0  ^m  1o ) 
|->  ( a `  (/) ) ) `
 b )  =  ( D `  F
)  /\  ( A `  ( ( a  e.  ( NN0  ^m  1o )  |->  ( a `  (/) ) ) `  b
) )  =/=  Y
) ) )
2827rexbidva 3049 . . . 4  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  F  =/= 
.0.  )  ->  ( E. b  e.  ( NN0  ^m  1o ) ( ( F `  b
)  =/=  Y  /\  ( ( a  e.  ( NN0  ^m  1o )  |->  ( a `  (/) ) ) `  b
)  =  ( D `
 F ) )  <->  E. b  e.  ( NN0  ^m  1o ) ( ( ( a  e.  ( NN0  ^m  1o )  |->  ( a `  (/) ) ) `  b
)  =  ( D `
 F )  /\  ( A `  ( ( a  e.  ( NN0 
^m  1o )  |->  ( a `  (/) ) ) `
 b ) )  =/=  Y ) ) )
29 df1o2 7572 . . . . . 6  |-  1o  =  { (/) }
30 nn0ex 11298 . . . . . 6  |-  NN0  e.  _V
31 0ex 4790 . . . . . 6  |-  (/)  e.  _V
3229, 30, 31, 18mapsnf1o2 7905 . . . . 5  |-  ( a  e.  ( NN0  ^m  1o )  |->  ( a `
 (/) ) ) : ( NN0  ^m  1o )
-1-1-onto-> NN0
33 f1ofo 6144 . . . . 5  |-  ( ( a  e.  ( NN0 
^m  1o )  |->  ( a `  (/) ) ) : ( NN0  ^m  1o ) -1-1-onto-> NN0  ->  ( a  e.  ( NN0  ^m  1o )  |->  ( a `  (/) ) ) : ( NN0  ^m  1o )
-onto->
NN0 )
34 eqeq1 2626 . . . . . . 7  |-  ( ( ( a  e.  ( NN0  ^m  1o ) 
|->  ( a `  (/) ) ) `
 b )  =  d  ->  ( (
( a  e.  ( NN0  ^m  1o ) 
|->  ( a `  (/) ) ) `
 b )  =  ( D `  F
)  <->  d  =  ( D `  F ) ) )
35 fveq2 6191 . . . . . . . 8  |-  ( ( ( a  e.  ( NN0  ^m  1o ) 
|->  ( a `  (/) ) ) `
 b )  =  d  ->  ( A `  ( ( a  e.  ( NN0  ^m  1o )  |->  ( a `  (/) ) ) `  b
) )  =  ( A `  d ) )
3635neeq1d 2853 . . . . . . 7  |-  ( ( ( a  e.  ( NN0  ^m  1o ) 
|->  ( a `  (/) ) ) `
 b )  =  d  ->  ( ( A `  ( (
a  e.  ( NN0 
^m  1o )  |->  ( a `  (/) ) ) `
 b ) )  =/=  Y  <->  ( A `  d )  =/=  Y
) )
3734, 36anbi12d 747 . . . . . 6  |-  ( ( ( a  e.  ( NN0  ^m  1o ) 
|->  ( a `  (/) ) ) `
 b )  =  d  ->  ( (
( ( a  e.  ( NN0  ^m  1o )  |->  ( a `  (/) ) ) `  b
)  =  ( D `
 F )  /\  ( A `  ( ( a  e.  ( NN0 
^m  1o )  |->  ( a `  (/) ) ) `
 b ) )  =/=  Y )  <->  ( d  =  ( D `  F )  /\  ( A `  d )  =/=  Y ) ) )
3837cbvexfo 6545 . . . . 5  |-  ( ( a  e.  ( NN0 
^m  1o )  |->  ( a `  (/) ) ) : ( NN0  ^m  1o ) -onto-> NN0  ->  ( E. b  e.  ( NN0  ^m  1o ) ( ( ( a  e.  ( NN0  ^m  1o ) 
|->  ( a `  (/) ) ) `
 b )  =  ( D `  F
)  /\  ( A `  ( ( a  e.  ( NN0  ^m  1o )  |->  ( a `  (/) ) ) `  b
) )  =/=  Y
)  <->  E. d  e.  NN0  ( d  =  ( D `  F )  /\  ( A `  d )  =/=  Y
) ) )
3932, 33, 38mp2b 10 . . . 4  |-  ( E. b  e.  ( NN0 
^m  1o ) ( ( ( a  e.  ( NN0  ^m  1o )  |->  ( a `  (/) ) ) `  b
)  =  ( D `
 F )  /\  ( A `  ( ( a  e.  ( NN0 
^m  1o )  |->  ( a `  (/) ) ) `
 b ) )  =/=  Y )  <->  E. d  e.  NN0  ( d  =  ( D `  F
)  /\  ( A `  d )  =/=  Y
) )
4028, 39syl6bb 276 . . 3  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  F  =/= 
.0.  )  ->  ( E. b  e.  ( NN0  ^m  1o ) ( ( F `  b
)  =/=  Y  /\  ( ( a  e.  ( NN0  ^m  1o )  |->  ( a `  (/) ) ) `  b
)  =  ( D `
 F ) )  <->  E. d  e.  NN0  ( d  =  ( D `  F )  /\  ( A `  d )  =/=  Y
) ) )
411, 4, 11, 6deg1nn0cl 23848 . . . 4  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  F  =/= 
.0.  )  ->  ( D `  F )  e.  NN0 )
42 fveq2 6191 . . . . . 6  |-  ( d  =  ( D `  F )  ->  ( A `  d )  =  ( A `  ( D `  F ) ) )
4342neeq1d 2853 . . . . 5  |-  ( d  =  ( D `  F )  ->  (
( A `  d
)  =/=  Y  <->  ( A `  ( D `  F
) )  =/=  Y
) )
4443ceqsrexv 3336 . . . 4  |-  ( ( D `  F )  e.  NN0  ->  ( E. d  e.  NN0  (
d  =  ( D `
 F )  /\  ( A `  d )  =/=  Y )  <->  ( A `  ( D `  F
) )  =/=  Y
) )
4541, 44syl 17 . . 3  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  F  =/= 
.0.  )  ->  ( E. d  e.  NN0  ( d  =  ( D `  F )  /\  ( A `  d )  =/=  Y
)  <->  ( A `  ( D `  F ) )  =/=  Y ) )
4640, 45bitrd 268 . 2  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  F  =/= 
.0.  )  ->  ( E. b  e.  ( NN0  ^m  1o ) ( ( F `  b
)  =/=  Y  /\  ( ( a  e.  ( NN0  ^m  1o )  |->  ( a `  (/) ) ) `  b
)  =  ( D `
 F ) )  <-> 
( A `  ( D `  F )
)  =/=  Y ) )
4713, 46mpbid 222 1  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  F  =/= 
.0.  )  ->  ( A `  ( D `  F ) )  =/= 
Y )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   E.wrex 2913   (/)c0 3915    |-> cmpt 4729   -onto->wfo 5886   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650   1oc1o 7553    ^m cmap 7857   NN0cn0 11292   Basecbs 15857   0gc0g 16100   Ringcrg 18547   mPoly cmpl 19353  PwSer1cps1 19545  Poly1cpl1 19547  coe1cco1 19548   deg1 cdg1 23814
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-0g 16102  df-gsum 16103  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-grp 17425  df-minusg 17426  df-mulg 17541  df-subg 17591  df-cntz 17750  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-cring 18550  df-psr 19356  df-mpl 19358  df-opsr 19360  df-psr1 19550  df-ply1 19552  df-coe1 19553  df-cnfld 19747  df-mdeg 23815  df-deg1 23816
This theorem is referenced by:  deg1ldgn  23853  deg1ldgdomn  23854  deg1add  23863  deg1mul2  23874  drnguc1p  23930
  Copyright terms: Public domain W3C validator