| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbvprod | Structured version Visualization version Unicode version | ||
| Description: Change bound variable in a product. (Contributed by Scott Fenton, 4-Dec-2017.) |
| Ref | Expression |
|---|---|
| cbvprod.1 |
|
| cbvprod.2 |
|
| cbvprod.3 |
|
| cbvprod.4 |
|
| cbvprod.5 |
|
| Ref | Expression |
|---|---|
| cbvprod |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biid 251 |
. . . . . 6
| |
| 2 | cbvprod.2 |
. . . . . . . . . . . . . 14
| |
| 3 | 2 | nfcri 2758 |
. . . . . . . . . . . . 13
|
| 4 | cbvprod.4 |
. . . . . . . . . . . . 13
| |
| 5 | nfcv 2764 |
. . . . . . . . . . . . 13
| |
| 6 | 3, 4, 5 | nfif 4115 |
. . . . . . . . . . . 12
|
| 7 | cbvprod.3 |
. . . . . . . . . . . . . 14
| |
| 8 | 7 | nfcri 2758 |
. . . . . . . . . . . . 13
|
| 9 | cbvprod.5 |
. . . . . . . . . . . . 13
| |
| 10 | nfcv 2764 |
. . . . . . . . . . . . 13
| |
| 11 | 8, 9, 10 | nfif 4115 |
. . . . . . . . . . . 12
|
| 12 | eleq1 2689 |
. . . . . . . . . . . . 13
| |
| 13 | cbvprod.1 |
. . . . . . . . . . . . 13
| |
| 14 | 12, 13 | ifbieq1d 4109 |
. . . . . . . . . . . 12
|
| 15 | 6, 11, 14 | cbvmpt 4749 |
. . . . . . . . . . 11
|
| 16 | seqeq3 12806 |
. . . . . . . . . . 11
| |
| 17 | 15, 16 | ax-mp 5 |
. . . . . . . . . 10
|
| 18 | 17 | breq1i 4660 |
. . . . . . . . 9
|
| 19 | 18 | anbi2i 730 |
. . . . . . . 8
|
| 20 | 19 | exbii 1774 |
. . . . . . 7
|
| 21 | 20 | rexbii 3041 |
. . . . . 6
|
| 22 | seqeq3 12806 |
. . . . . . . 8
| |
| 23 | 15, 22 | ax-mp 5 |
. . . . . . 7
|
| 24 | 23 | breq1i 4660 |
. . . . . 6
|
| 25 | 1, 21, 24 | 3anbi123i 1251 |
. . . . 5
|
| 26 | 25 | rexbii 3041 |
. . . 4
|
| 27 | 4, 9, 13 | cbvcsb 3538 |
. . . . . . . . . . 11
|
| 28 | 27 | mpteq2i 4741 |
. . . . . . . . . 10
|
| 29 | seqeq3 12806 |
. . . . . . . . . 10
| |
| 30 | 28, 29 | ax-mp 5 |
. . . . . . . . 9
|
| 31 | 30 | fveq1i 6192 |
. . . . . . . 8
|
| 32 | 31 | eqeq2i 2634 |
. . . . . . 7
|
| 33 | 32 | anbi2i 730 |
. . . . . 6
|
| 34 | 33 | exbii 1774 |
. . . . 5
|
| 35 | 34 | rexbii 3041 |
. . . 4
|
| 36 | 26, 35 | orbi12i 543 |
. . 3
|
| 37 | 36 | iotabii 5873 |
. 2
|
| 38 | df-prod 14636 |
. 2
| |
| 39 | df-prod 14636 |
. 2
| |
| 40 | 37, 38, 39 | 3eqtr4i 2654 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-xp 5120 df-cnv 5122 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-iota 5851 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-seq 12802 df-prod 14636 |
| This theorem is referenced by: cbvprodv 14646 cbvprodi 14647 fprodcllemf 14688 fproddivf 14718 fprodsplitf 14719 vonn0ioo2 40904 vonn0icc2 40906 |
| Copyright terms: Public domain | W3C validator |