Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1366 Structured version   Visualization version   Unicode version

Theorem bnj1366 30900
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Proof shortened by Mario Carneiro, 22-Dec-2016.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj1366.1  |-  ( ps  <->  ( A  e.  _V  /\  A. x  e.  A  E! y ph  /\  B  =  { y  |  E. x  e.  A  ph }
) )
Assertion
Ref Expression
bnj1366  |-  ( ps 
->  B  e.  _V )
Distinct variable group:    x, A, y
Allowed substitution hints:    ph( x, y)    ps( x, y)    B( x, y)

Proof of Theorem bnj1366
StepHypRef Expression
1 bnj1366.1 . . . 4  |-  ( ps  <->  ( A  e.  _V  /\  A. x  e.  A  E! y ph  /\  B  =  { y  |  E. x  e.  A  ph }
) )
21simp3bi 1078 . . 3  |-  ( ps 
->  B  =  {
y  |  E. x  e.  A  ph } )
31simp2bi 1077 . . . . 5  |-  ( ps 
->  A. x  e.  A  E! y ph )
4 nfcv 2764 . . . . . . 7  |-  F/_ y A
5 nfeu1 2480 . . . . . . 7  |-  F/ y E! y ph
64, 5nfral 2945 . . . . . 6  |-  F/ y A. x  e.  A  E! y ph
7 nfra1 2941 . . . . . . . 8  |-  F/ x A. x  e.  A  E! y ph
8 rspa 2930 . . . . . . . . 9  |-  ( ( A. x  e.  A  E! y ph  /\  x  e.  A )  ->  E! y ph )
9 iota1 5865 . . . . . . . . . 10  |-  ( E! y ph  ->  ( ph 
<->  ( iota y ph )  =  y )
)
10 eqcom 2629 . . . . . . . . . 10  |-  ( ( iota y ph )  =  y  <->  y  =  ( iota y ph )
)
119, 10syl6bb 276 . . . . . . . . 9  |-  ( E! y ph  ->  ( ph 
<->  y  =  ( iota y ph ) ) )
128, 11syl 17 . . . . . . . 8  |-  ( ( A. x  e.  A  E! y ph  /\  x  e.  A )  ->  ( ph 
<->  y  =  ( iota y ph ) ) )
137, 12rexbida 3047 . . . . . . 7  |-  ( A. x  e.  A  E! y ph  ->  ( E. x  e.  A  ph  <->  E. x  e.  A  y  =  ( iota y ph )
) )
14 abid 2610 . . . . . . 7  |-  ( y  e.  { y  |  E. x  e.  A  ph }  <->  E. x  e.  A  ph )
15 eqid 2622 . . . . . . . 8  |-  ( x  e.  A  |->  ( iota y ph ) )  =  ( x  e.  A  |->  ( iota y ph ) )
16 iotaex 5868 . . . . . . . 8  |-  ( iota y ph )  e. 
_V
1715, 16elrnmpti 5376 . . . . . . 7  |-  ( y  e.  ran  ( x  e.  A  |->  ( iota y ph ) )  <->  E. x  e.  A  y  =  ( iota y ph ) )
1813, 14, 173bitr4g 303 . . . . . 6  |-  ( A. x  e.  A  E! y ph  ->  ( y  e.  { y  |  E. x  e.  A  ph }  <->  y  e.  ran  ( x  e.  A  |->  ( iota y ph ) ) ) )
196, 18alrimi 2082 . . . . 5  |-  ( A. x  e.  A  E! y ph  ->  A. y
( y  e.  {
y  |  E. x  e.  A  ph }  <->  y  e.  ran  ( x  e.  A  |->  ( iota y ph ) ) ) )
203, 19syl 17 . . . 4  |-  ( ps 
->  A. y ( y  e.  { y  |  E. x  e.  A  ph }  <->  y  e.  ran  ( x  e.  A  |->  ( iota y ph ) ) ) )
21 nfab1 2766 . . . . 5  |-  F/_ y { y  |  E. x  e.  A  ph }
22 nfiota1 5853 . . . . . . 7  |-  F/_ y
( iota y ph )
234, 22nfmpt 4746 . . . . . 6  |-  F/_ y
( x  e.  A  |->  ( iota y ph ) )
2423nfrn 5368 . . . . 5  |-  F/_ y ran  ( x  e.  A  |->  ( iota y ph ) )
2521, 24cleqf 2790 . . . 4  |-  ( { y  |  E. x  e.  A  ph }  =  ran  ( x  e.  A  |->  ( iota y ph ) )  <->  A. y
( y  e.  {
y  |  E. x  e.  A  ph }  <->  y  e.  ran  ( x  e.  A  |->  ( iota y ph ) ) ) )
2620, 25sylibr 224 . . 3  |-  ( ps 
->  { y  |  E. x  e.  A  ph }  =  ran  ( x  e.  A  |->  ( iota y ph ) ) )
272, 26eqtrd 2656 . 2  |-  ( ps 
->  B  =  ran  ( x  e.  A  |->  ( iota y ph ) ) )
281simp1bi 1076 . . 3  |-  ( ps 
->  A  e.  _V )
29 mptexg 6484 . . 3  |-  ( A  e.  _V  ->  (
x  e.  A  |->  ( iota y ph )
)  e.  _V )
30 rnexg 7098 . . 3  |-  ( ( x  e.  A  |->  ( iota y ph )
)  e.  _V  ->  ran  ( x  e.  A  |->  ( iota y ph ) )  e.  _V )
3128, 29, 303syl 18 . 2  |-  ( ps 
->  ran  ( x  e.  A  |->  ( iota y ph ) )  e.  _V )
3227, 31eqeltrd 2701 1  |-  ( ps 
->  B  e.  _V )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037   A.wal 1481    = wceq 1483    e. wcel 1990   E!weu 2470   {cab 2608   A.wral 2912   E.wrex 2913   _Vcvv 3200    |-> cmpt 4729   ran crn 5115   iotacio 5849
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896
This theorem is referenced by:  bnj1489  31124
  Copyright terms: Public domain W3C validator