| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1366 | Structured version Visualization version Unicode version | ||
| Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Proof shortened by Mario Carneiro, 22-Dec-2016.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj1366.1 |
|
| Ref | Expression |
|---|---|
| bnj1366 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj1366.1 |
. . . 4
| |
| 2 | 1 | simp3bi 1078 |
. . 3
|
| 3 | 1 | simp2bi 1077 |
. . . . 5
|
| 4 | nfcv 2764 |
. . . . . . 7
| |
| 5 | nfeu1 2480 |
. . . . . . 7
| |
| 6 | 4, 5 | nfral 2945 |
. . . . . 6
|
| 7 | nfra1 2941 |
. . . . . . . 8
| |
| 8 | rspa 2930 |
. . . . . . . . 9
| |
| 9 | iota1 5865 |
. . . . . . . . . 10
| |
| 10 | eqcom 2629 |
. . . . . . . . . 10
| |
| 11 | 9, 10 | syl6bb 276 |
. . . . . . . . 9
|
| 12 | 8, 11 | syl 17 |
. . . . . . . 8
|
| 13 | 7, 12 | rexbida 3047 |
. . . . . . 7
|
| 14 | abid 2610 |
. . . . . . 7
| |
| 15 | eqid 2622 |
. . . . . . . 8
| |
| 16 | iotaex 5868 |
. . . . . . . 8
| |
| 17 | 15, 16 | elrnmpti 5376 |
. . . . . . 7
|
| 18 | 13, 14, 17 | 3bitr4g 303 |
. . . . . 6
|
| 19 | 6, 18 | alrimi 2082 |
. . . . 5
|
| 20 | 3, 19 | syl 17 |
. . . 4
|
| 21 | nfab1 2766 |
. . . . 5
| |
| 22 | nfiota1 5853 |
. . . . . . 7
| |
| 23 | 4, 22 | nfmpt 4746 |
. . . . . 6
|
| 24 | 23 | nfrn 5368 |
. . . . 5
|
| 25 | 21, 24 | cleqf 2790 |
. . . 4
|
| 26 | 20, 25 | sylibr 224 |
. . 3
|
| 27 | 2, 26 | eqtrd 2656 |
. 2
|
| 28 | 1 | simp1bi 1076 |
. . 3
|
| 29 | mptexg 6484 |
. . 3
| |
| 30 | rnexg 7098 |
. . 3
| |
| 31 | 28, 29, 30 | 3syl 18 |
. 2
|
| 32 | 27, 31 | eqeltrd 2701 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 |
| This theorem is referenced by: bnj1489 31124 |
| Copyright terms: Public domain | W3C validator |