MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfposr Structured version   Visualization version   Unicode version

Theorem mbfposr 23419
Description: Converse to mbfpos 23418. (Contributed by Mario Carneiro, 11-Aug-2014.)
Hypotheses
Ref Expression
mbfpos.1  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  RR )
mbfposr.2  |-  ( ph  ->  ( x  e.  A  |->  if ( 0  <_  B ,  B , 
0 ) )  e. MblFn
)
mbfposr.3  |-  ( ph  ->  ( x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) )  e. MblFn )
Assertion
Ref Expression
mbfposr  |-  ( ph  ->  ( x  e.  A  |->  B )  e. MblFn )
Distinct variable groups:    x, A    ph, x
Allowed substitution hint:    B( x)

Proof of Theorem mbfposr
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 mbfpos.1 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  RR )
2 eqid 2622 . . 3  |-  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  B )
31, 2fmptd 6385 . 2  |-  ( ph  ->  ( x  e.  A  |->  B ) : A --> RR )
4 mbfposr.2 . . 3  |-  ( ph  ->  ( x  e.  A  |->  if ( 0  <_  B ,  B , 
0 ) )  e. MblFn
)
5 0re 10040 . . . 4  |-  0  e.  RR
6 ifcl 4130 . . . 4  |-  ( ( B  e.  RR  /\  0  e.  RR )  ->  if ( 0  <_  B ,  B , 
0 )  e.  RR )
71, 5, 6sylancl 694 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  if ( 0  <_  B ,  B ,  0 )  e.  RR )
84, 7mbfdm2 23405 . 2  |-  ( ph  ->  A  e.  dom  vol )
9 simplr 792 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  y  <  0
)  /\  x  e.  A )  ->  y  <  0 )
10 simpllr 799 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  y  <  0
)  /\  x  e.  A )  ->  y  e.  RR )
1110lt0neg1d 10597 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  y  <  0
)  /\  x  e.  A )  ->  (
y  <  0  <->  0  <  -u y ) )
129, 11mpbid 222 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  y  <  0
)  /\  x  e.  A )  ->  0  <  -u y )
1312biantrurd 529 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  y  <  0
)  /\  x  e.  A )  ->  ( -u B  <  -u y  <->  ( 0  <  -u y  /\  -u B  <  -u y
) ) )
14 simpll 790 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  y  e.  RR )  /\  y  <  0 )  ->  ph )
1514, 1sylan 488 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  y  <  0
)  /\  x  e.  A )  ->  B  e.  RR )
1610, 15ltnegd 10605 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  y  <  0
)  /\  x  e.  A )  ->  (
y  <  B  <->  -u B  <  -u y ) )
17 0red 10041 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  y  <  0
)  /\  x  e.  A )  ->  0  e.  RR )
1815renegcld 10457 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  y  <  0
)  /\  x  e.  A )  ->  -u B  e.  RR )
1910renegcld 10457 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  y  <  0
)  /\  x  e.  A )  ->  -u y  e.  RR )
20 maxlt 12024 . . . . . . . . . . . . 13  |-  ( ( 0  e.  RR  /\  -u B  e.  RR  /\  -u y  e.  RR )  ->  ( if ( 0  <_  -u B ,  -u B ,  0 )  <  -u y  <->  ( 0  <  -u y  /\  -u B  <  -u y ) ) )
2117, 18, 19, 20syl3anc 1326 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  y  <  0
)  /\  x  e.  A )  ->  ( if ( 0  <_  -u B ,  -u B ,  0 )  <  -u y  <->  ( 0  <  -u y  /\  -u B  <  -u y
) ) )
2213, 16, 213bitr4rd 301 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  y  <  0
)  /\  x  e.  A )  ->  ( if ( 0  <_  -u B ,  -u B ,  0 )  <  -u y  <->  y  <  B ) )
231renegcld 10457 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  A )  ->  -u B  e.  RR )
24 ifcl 4130 . . . . . . . . . . . . . 14  |-  ( (
-u B  e.  RR  /\  0  e.  RR )  ->  if ( 0  <_  -u B ,  -u B ,  0 )  e.  RR )
2523, 5, 24sylancl 694 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  A )  ->  if ( 0  <_  -u B ,  -u B ,  0 )  e.  RR )
2614, 25sylan 488 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  y  <  0
)  /\  x  e.  A )  ->  if ( 0  <_  -u B ,  -u B ,  0 )  e.  RR )
2726biantrurd 529 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  y  <  0
)  /\  x  e.  A )  ->  ( if ( 0  <_  -u B ,  -u B ,  0 )  <  -u y  <->  ( if ( 0  <_  -u B ,  -u B ,  0 )  e.  RR  /\  if ( 0  <_  -u B ,  -u B ,  0 )  <  -u y ) ) )
2815biantrurd 529 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  y  <  0
)  /\  x  e.  A )  ->  (
y  <  B  <->  ( B  e.  RR  /\  y  < 
B ) ) )
2922, 27, 283bitr3d 298 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  y  <  0
)  /\  x  e.  A )  ->  (
( if ( 0  <_  -u B ,  -u B ,  0 )  e.  RR  /\  if ( 0  <_  -u B ,  -u B ,  0 )  <  -u y
)  <->  ( B  e.  RR  /\  y  < 
B ) ) )
3019rexrd 10089 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  y  <  0
)  /\  x  e.  A )  ->  -u y  e.  RR* )
31 elioomnf 12268 . . . . . . . . . . 11  |-  ( -u y  e.  RR*  ->  ( if ( 0  <_  -u B ,  -u B ,  0 )  e.  ( -oo (,) -u y )  <->  ( if ( 0  <_  -u B ,  -u B ,  0 )  e.  RR  /\  if ( 0  <_  -u B ,  -u B ,  0 )  <  -u y
) ) )
3230, 31syl 17 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  y  <  0
)  /\  x  e.  A )  ->  ( if ( 0  <_  -u B ,  -u B ,  0 )  e.  ( -oo (,) -u y )  <->  ( if ( 0  <_  -u B ,  -u B ,  0 )  e.  RR  /\  if ( 0  <_  -u B ,  -u B ,  0 )  <  -u y
) ) )
3310rexrd 10089 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  y  <  0
)  /\  x  e.  A )  ->  y  e.  RR* )
34 elioopnf 12267 . . . . . . . . . . 11  |-  ( y  e.  RR*  ->  ( B  e.  ( y (,) +oo )  <->  ( B  e.  RR  /\  y  < 
B ) ) )
3533, 34syl 17 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  y  <  0
)  /\  x  e.  A )  ->  ( B  e.  ( y (,) +oo )  <->  ( B  e.  RR  /\  y  < 
B ) ) )
3629, 32, 353bitr4d 300 . . . . . . . . 9  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  y  <  0
)  /\  x  e.  A )  ->  ( if ( 0  <_  -u B ,  -u B ,  0 )  e.  ( -oo (,) -u y )  <->  B  e.  ( y (,) +oo ) ) )
37 simpr 477 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  A )  ->  x  e.  A )
38 eqid 2622 . . . . . . . . . . . . 13  |-  ( x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) )  =  ( x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) )
3938fvmpt2 6291 . . . . . . . . . . . 12  |-  ( ( x  e.  A  /\  if ( 0  <_  -u B ,  -u B ,  0 )  e.  RR )  ->  ( ( x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) ) `  x )  =  if ( 0  <_  -u B ,  -u B ,  0 ) )
4037, 25, 39syl2anc 693 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  A )  ->  (
( x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) ) `
 x )  =  if ( 0  <_  -u B ,  -u B ,  0 ) )
4140eleq1d 2686 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  (
( ( x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) ) `  x )  e.  ( -oo (,) -u y )  <->  if (
0  <_  -u B ,  -u B ,  0 )  e.  ( -oo (,) -u y ) ) )
4214, 41sylan 488 . . . . . . . . 9  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  y  <  0
)  /\  x  e.  A )  ->  (
( ( x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) ) `  x )  e.  ( -oo (,) -u y )  <->  if (
0  <_  -u B ,  -u B ,  0 )  e.  ( -oo (,) -u y ) ) )
432fvmpt2 6291 . . . . . . . . . . . 12  |-  ( ( x  e.  A  /\  B  e.  RR )  ->  ( ( x  e.  A  |->  B ) `  x )  =  B )
4437, 1, 43syl2anc 693 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  A )  ->  (
( x  e.  A  |->  B ) `  x
)  =  B )
4544eleq1d 2686 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  (
( ( x  e.  A  |->  B ) `  x )  e.  ( y (,) +oo )  <->  B  e.  ( y (,) +oo ) ) )
4614, 45sylan 488 . . . . . . . . 9  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  y  <  0
)  /\  x  e.  A )  ->  (
( ( x  e.  A  |->  B ) `  x )  e.  ( y (,) +oo )  <->  B  e.  ( y (,) +oo ) ) )
4736, 42, 463bitr4d 300 . . . . . . . 8  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  y  <  0
)  /\  x  e.  A )  ->  (
( ( x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) ) `  x )  e.  ( -oo (,) -u y )  <->  ( (
x  e.  A  |->  B ) `  x )  e.  ( y (,) +oo ) ) )
4847pm5.32da 673 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  RR )  /\  y  <  0 )  ->  (
( x  e.  A  /\  ( ( x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) ) `  x )  e.  ( -oo (,) -u y ) )  <->  ( x  e.  A  /\  (
( x  e.  A  |->  B ) `  x
)  e.  ( y (,) +oo ) ) ) )
4925, 38fmptd 6385 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) ) : A --> RR )
50 ffn 6045 . . . . . . . . 9  |-  ( ( x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) ) : A --> RR  ->  ( x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) )  Fn  A )
51 elpreima 6337 . . . . . . . . 9  |-  ( ( x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) )  Fn  A  ->  ( x  e.  ( `' ( x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) ) " ( -oo (,) -u y ) )  <-> 
( x  e.  A  /\  ( ( x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) ) `  x )  e.  ( -oo (,) -u y ) ) ) )
5249, 50, 513syl 18 . . . . . . . 8  |-  ( ph  ->  ( x  e.  ( `' ( x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) ) " ( -oo (,) -u y ) )  <-> 
( x  e.  A  /\  ( ( x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) ) `  x )  e.  ( -oo (,) -u y ) ) ) )
5352ad2antrr 762 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  RR )  /\  y  <  0 )  ->  (
x  e.  ( `' ( x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) )
" ( -oo (,) -u y ) )  <->  ( x  e.  A  /\  (
( x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) ) `
 x )  e.  ( -oo (,) -u y
) ) ) )
54 ffn 6045 . . . . . . . . 9  |-  ( ( x  e.  A  |->  B ) : A --> RR  ->  ( x  e.  A  |->  B )  Fn  A )
55 elpreima 6337 . . . . . . . . 9  |-  ( ( x  e.  A  |->  B )  Fn  A  -> 
( x  e.  ( `' ( x  e.  A  |->  B ) "
( y (,) +oo ) )  <->  ( x  e.  A  /\  (
( x  e.  A  |->  B ) `  x
)  e.  ( y (,) +oo ) ) ) )
563, 54, 553syl 18 . . . . . . . 8  |-  ( ph  ->  ( x  e.  ( `' ( x  e.  A  |->  B ) "
( y (,) +oo ) )  <->  ( x  e.  A  /\  (
( x  e.  A  |->  B ) `  x
)  e.  ( y (,) +oo ) ) ) )
5756ad2antrr 762 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  RR )  /\  y  <  0 )  ->  (
x  e.  ( `' ( x  e.  A  |->  B ) " (
y (,) +oo )
)  <->  ( x  e.  A  /\  ( ( x  e.  A  |->  B ) `  x )  e.  ( y (,) +oo ) ) ) )
5848, 53, 573bitr4d 300 . . . . . 6  |-  ( ( ( ph  /\  y  e.  RR )  /\  y  <  0 )  ->  (
x  e.  ( `' ( x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) )
" ( -oo (,) -u y ) )  <->  x  e.  ( `' ( x  e.  A  |->  B ) "
( y (,) +oo ) ) ) )
5958alrimiv 1855 . . . . 5  |-  ( ( ( ph  /\  y  e.  RR )  /\  y  <  0 )  ->  A. x
( x  e.  ( `' ( x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) ) " ( -oo (,) -u y ) )  <-> 
x  e.  ( `' ( x  e.  A  |->  B ) " (
y (,) +oo )
) ) )
60 nfmpt1 4747 . . . . . . . 8  |-  F/_ x
( x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) )
6160nfcnv 5301 . . . . . . 7  |-  F/_ x `' ( x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) )
62 nfcv 2764 . . . . . . 7  |-  F/_ x
( -oo (,) -u y
)
6361, 62nfima 5474 . . . . . 6  |-  F/_ x
( `' ( x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) ) " ( -oo (,) -u y ) )
64 nfmpt1 4747 . . . . . . . 8  |-  F/_ x
( x  e.  A  |->  B )
6564nfcnv 5301 . . . . . . 7  |-  F/_ x `' ( x  e.  A  |->  B )
66 nfcv 2764 . . . . . . 7  |-  F/_ x
( y (,) +oo )
6765, 66nfima 5474 . . . . . 6  |-  F/_ x
( `' ( x  e.  A  |->  B )
" ( y (,) +oo ) )
6863, 67cleqf 2790 . . . . 5  |-  ( ( `' ( x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) ) " ( -oo (,) -u y ) )  =  ( `' ( x  e.  A  |->  B ) " ( y (,) +oo ) )  <->  A. x ( x  e.  ( `' ( x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) ) " ( -oo (,) -u y ) )  <-> 
x  e.  ( `' ( x  e.  A  |->  B ) " (
y (,) +oo )
) ) )
6959, 68sylibr 224 . . . 4  |-  ( ( ( ph  /\  y  e.  RR )  /\  y  <  0 )  ->  ( `' ( x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) ) " ( -oo (,) -u y ) )  =  ( `' ( x  e.  A  |->  B ) " ( y (,) +oo ) ) )
70 mbfposr.3 . . . . . 6  |-  ( ph  ->  ( x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) )  e. MblFn )
71 mbfima 23399 . . . . . 6  |-  ( ( ( x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) )  e. MblFn  /\  ( x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) ) : A --> RR )  ->  ( `' ( x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) ) " ( -oo (,) -u y ) )  e.  dom  vol )
7270, 49, 71syl2anc 693 . . . . 5  |-  ( ph  ->  ( `' ( x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) ) " ( -oo (,) -u y ) )  e.  dom  vol )
7372ad2antrr 762 . . . 4  |-  ( ( ( ph  /\  y  e.  RR )  /\  y  <  0 )  ->  ( `' ( x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) ) " ( -oo (,) -u y ) )  e.  dom  vol )
7469, 73eqeltrrd 2702 . . 3  |-  ( ( ( ph  /\  y  e.  RR )  /\  y  <  0 )  ->  ( `' ( x  e.  A  |->  B ) "
( y (,) +oo ) )  e.  dom  vol )
75 0red 10041 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  0  <_  y )  /\  x  e.  A
)  ->  0  e.  RR )
76 simpll 790 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  y  e.  RR )  /\  0  <_  y )  ->  ph )
7776, 1sylan 488 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  0  <_  y )  /\  x  e.  A
)  ->  B  e.  RR )
78 simpllr 799 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  0  <_  y )  /\  x  e.  A
)  ->  y  e.  RR )
79 maxle 12022 . . . . . . . . . . . . . . 15  |-  ( ( 0  e.  RR  /\  B  e.  RR  /\  y  e.  RR )  ->  ( if ( 0  <_  B ,  B ,  0 )  <_  y  <->  ( 0  <_  y  /\  B  <_  y ) ) )
8075, 77, 78, 79syl3anc 1326 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  0  <_  y )  /\  x  e.  A
)  ->  ( if ( 0  <_  B ,  B ,  0 )  <_  y  <->  ( 0  <_  y  /\  B  <_  y ) ) )
81 simplr 792 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  0  <_  y )  /\  x  e.  A
)  ->  0  <_  y )
8281biantrurd 529 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  0  <_  y )  /\  x  e.  A
)  ->  ( B  <_  y  <->  ( 0  <_ 
y  /\  B  <_  y ) ) )
8380, 82bitr4d 271 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  0  <_  y )  /\  x  e.  A
)  ->  ( if ( 0  <_  B ,  B ,  0 )  <_  y  <->  B  <_  y ) )
8483notbid 308 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  0  <_  y )  /\  x  e.  A
)  ->  ( -.  if ( 0  <_  B ,  B ,  0 )  <_  y  <->  -.  B  <_  y ) )
8577, 5, 6sylancl 694 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  0  <_  y )  /\  x  e.  A
)  ->  if (
0  <_  B ,  B ,  0 )  e.  RR )
8678, 85ltnled 10184 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  0  <_  y )  /\  x  e.  A
)  ->  ( y  <  if ( 0  <_  B ,  B , 
0 )  <->  -.  if ( 0  <_  B ,  B ,  0 )  <_  y ) )
8778, 77ltnled 10184 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  0  <_  y )  /\  x  e.  A
)  ->  ( y  <  B  <->  -.  B  <_  y ) )
8884, 86, 873bitr4d 300 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  0  <_  y )  /\  x  e.  A
)  ->  ( y  <  if ( 0  <_  B ,  B , 
0 )  <->  y  <  B ) )
8985biantrurd 529 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  0  <_  y )  /\  x  e.  A
)  ->  ( y  <  if ( 0  <_  B ,  B , 
0 )  <->  ( if ( 0  <_  B ,  B ,  0 )  e.  RR  /\  y  <  if ( 0  <_  B ,  B , 
0 ) ) ) )
9077biantrurd 529 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  0  <_  y )  /\  x  e.  A
)  ->  ( y  <  B  <->  ( B  e.  RR  /\  y  < 
B ) ) )
9188, 89, 903bitr3d 298 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  0  <_  y )  /\  x  e.  A
)  ->  ( ( if ( 0  <_  B ,  B ,  0 )  e.  RR  /\  y  <  if ( 0  <_  B ,  B , 
0 ) )  <->  ( B  e.  RR  /\  y  < 
B ) ) )
9278rexrd 10089 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  0  <_  y )  /\  x  e.  A
)  ->  y  e.  RR* )
93 elioopnf 12267 . . . . . . . . . . 11  |-  ( y  e.  RR*  ->  ( if ( 0  <_  B ,  B ,  0 )  e.  ( y (,) +oo )  <->  ( if ( 0  <_  B ,  B ,  0 )  e.  RR  /\  y  <  if ( 0  <_  B ,  B , 
0 ) ) ) )
9492, 93syl 17 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  0  <_  y )  /\  x  e.  A
)  ->  ( if ( 0  <_  B ,  B ,  0 )  e.  ( y (,) +oo )  <->  ( if ( 0  <_  B ,  B ,  0 )  e.  RR  /\  y  <  if ( 0  <_  B ,  B , 
0 ) ) ) )
9592, 34syl 17 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  0  <_  y )  /\  x  e.  A
)  ->  ( B  e.  ( y (,) +oo ) 
<->  ( B  e.  RR  /\  y  <  B ) ) )
9691, 94, 953bitr4d 300 . . . . . . . . 9  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  0  <_  y )  /\  x  e.  A
)  ->  ( if ( 0  <_  B ,  B ,  0 )  e.  ( y (,) +oo )  <->  B  e.  (
y (,) +oo )
) )
97 eqid 2622 . . . . . . . . . . . . 13  |-  ( x  e.  A  |->  if ( 0  <_  B ,  B ,  0 ) )  =  ( x  e.  A  |->  if ( 0  <_  B ,  B ,  0 ) )
9897fvmpt2 6291 . . . . . . . . . . . 12  |-  ( ( x  e.  A  /\  if ( 0  <_  B ,  B ,  0 )  e.  RR )  -> 
( ( x  e.  A  |->  if ( 0  <_  B ,  B ,  0 ) ) `
 x )  =  if ( 0  <_  B ,  B , 
0 ) )
9937, 7, 98syl2anc 693 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  A )  ->  (
( x  e.  A  |->  if ( 0  <_  B ,  B , 
0 ) ) `  x )  =  if ( 0  <_  B ,  B ,  0 ) )
10099eleq1d 2686 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  (
( ( x  e.  A  |->  if ( 0  <_  B ,  B ,  0 ) ) `
 x )  e.  ( y (,) +oo ) 
<->  if ( 0  <_  B ,  B , 
0 )  e.  ( y (,) +oo )
) )
10176, 100sylan 488 . . . . . . . . 9  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  0  <_  y )  /\  x  e.  A
)  ->  ( (
( x  e.  A  |->  if ( 0  <_  B ,  B , 
0 ) ) `  x )  e.  ( y (,) +oo )  <->  if ( 0  <_  B ,  B ,  0 )  e.  ( y (,) +oo ) ) )
10276, 45sylan 488 . . . . . . . . 9  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  0  <_  y )  /\  x  e.  A
)  ->  ( (
( x  e.  A  |->  B ) `  x
)  e.  ( y (,) +oo )  <->  B  e.  ( y (,) +oo ) ) )
10396, 101, 1023bitr4d 300 . . . . . . . 8  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  0  <_  y )  /\  x  e.  A
)  ->  ( (
( x  e.  A  |->  if ( 0  <_  B ,  B , 
0 ) ) `  x )  e.  ( y (,) +oo )  <->  ( ( x  e.  A  |->  B ) `  x
)  e.  ( y (,) +oo ) ) )
104103pm5.32da 673 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  RR )  /\  0  <_  y )  ->  (
( x  e.  A  /\  ( ( x  e.  A  |->  if ( 0  <_  B ,  B ,  0 ) ) `
 x )  e.  ( y (,) +oo ) )  <->  ( x  e.  A  /\  (
( x  e.  A  |->  B ) `  x
)  e.  ( y (,) +oo ) ) ) )
1057, 97fmptd 6385 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  A  |->  if ( 0  <_  B ,  B , 
0 ) ) : A --> RR )
106 ffn 6045 . . . . . . . . 9  |-  ( ( x  e.  A  |->  if ( 0  <_  B ,  B ,  0 ) ) : A --> RR  ->  ( x  e.  A  |->  if ( 0  <_  B ,  B ,  0 ) )  Fn  A )
107 elpreima 6337 . . . . . . . . 9  |-  ( ( x  e.  A  |->  if ( 0  <_  B ,  B ,  0 ) )  Fn  A  -> 
( x  e.  ( `' ( x  e.  A  |->  if ( 0  <_  B ,  B ,  0 ) )
" ( y (,) +oo ) )  <->  ( x  e.  A  /\  (
( x  e.  A  |->  if ( 0  <_  B ,  B , 
0 ) ) `  x )  e.  ( y (,) +oo )
) ) )
108105, 106, 1073syl 18 . . . . . . . 8  |-  ( ph  ->  ( x  e.  ( `' ( x  e.  A  |->  if ( 0  <_  B ,  B ,  0 ) )
" ( y (,) +oo ) )  <->  ( x  e.  A  /\  (
( x  e.  A  |->  if ( 0  <_  B ,  B , 
0 ) ) `  x )  e.  ( y (,) +oo )
) ) )
109108ad2antrr 762 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  RR )  /\  0  <_  y )  ->  (
x  e.  ( `' ( x  e.  A  |->  if ( 0  <_  B ,  B , 
0 ) ) "
( y (,) +oo ) )  <->  ( x  e.  A  /\  (
( x  e.  A  |->  if ( 0  <_  B ,  B , 
0 ) ) `  x )  e.  ( y (,) +oo )
) ) )
11056ad2antrr 762 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  RR )  /\  0  <_  y )  ->  (
x  e.  ( `' ( x  e.  A  |->  B ) " (
y (,) +oo )
)  <->  ( x  e.  A  /\  ( ( x  e.  A  |->  B ) `  x )  e.  ( y (,) +oo ) ) ) )
111104, 109, 1103bitr4d 300 . . . . . 6  |-  ( ( ( ph  /\  y  e.  RR )  /\  0  <_  y )  ->  (
x  e.  ( `' ( x  e.  A  |->  if ( 0  <_  B ,  B , 
0 ) ) "
( y (,) +oo ) )  <->  x  e.  ( `' ( x  e.  A  |->  B ) "
( y (,) +oo ) ) ) )
112111alrimiv 1855 . . . . 5  |-  ( ( ( ph  /\  y  e.  RR )  /\  0  <_  y )  ->  A. x
( x  e.  ( `' ( x  e.  A  |->  if ( 0  <_  B ,  B ,  0 ) )
" ( y (,) +oo ) )  <->  x  e.  ( `' ( x  e.  A  |->  B ) "
( y (,) +oo ) ) ) )
113 nfmpt1 4747 . . . . . . . 8  |-  F/_ x
( x  e.  A  |->  if ( 0  <_  B ,  B , 
0 ) )
114113nfcnv 5301 . . . . . . 7  |-  F/_ x `' ( x  e.  A  |->  if ( 0  <_  B ,  B ,  0 ) )
115114, 66nfima 5474 . . . . . 6  |-  F/_ x
( `' ( x  e.  A  |->  if ( 0  <_  B ,  B ,  0 ) ) " ( y (,) +oo ) )
116115, 67cleqf 2790 . . . . 5  |-  ( ( `' ( x  e.  A  |->  if ( 0  <_  B ,  B ,  0 ) )
" ( y (,) +oo ) )  =  ( `' ( x  e.  A  |->  B ) "
( y (,) +oo ) )  <->  A. x
( x  e.  ( `' ( x  e.  A  |->  if ( 0  <_  B ,  B ,  0 ) )
" ( y (,) +oo ) )  <->  x  e.  ( `' ( x  e.  A  |->  B ) "
( y (,) +oo ) ) ) )
117112, 116sylibr 224 . . . 4  |-  ( ( ( ph  /\  y  e.  RR )  /\  0  <_  y )  ->  ( `' ( x  e.  A  |->  if ( 0  <_  B ,  B ,  0 ) )
" ( y (,) +oo ) )  =  ( `' ( x  e.  A  |->  B ) "
( y (,) +oo ) ) )
118 mbfima 23399 . . . . . 6  |-  ( ( ( x  e.  A  |->  if ( 0  <_  B ,  B , 
0 ) )  e. MblFn  /\  ( x  e.  A  |->  if ( 0  <_  B ,  B , 
0 ) ) : A --> RR )  -> 
( `' ( x  e.  A  |->  if ( 0  <_  B ,  B ,  0 ) ) " ( y (,) +oo ) )  e.  dom  vol )
1194, 105, 118syl2anc 693 . . . . 5  |-  ( ph  ->  ( `' ( x  e.  A  |->  if ( 0  <_  B ,  B ,  0 ) ) " ( y (,) +oo ) )  e.  dom  vol )
120119ad2antrr 762 . . . 4  |-  ( ( ( ph  /\  y  e.  RR )  /\  0  <_  y )  ->  ( `' ( x  e.  A  |->  if ( 0  <_  B ,  B ,  0 ) )
" ( y (,) +oo ) )  e.  dom  vol )
121117, 120eqeltrrd 2702 . . 3  |-  ( ( ( ph  /\  y  e.  RR )  /\  0  <_  y )  ->  ( `' ( x  e.  A  |->  B ) "
( y (,) +oo ) )  e.  dom  vol )
122 simpr 477 . . 3  |-  ( (
ph  /\  y  e.  RR )  ->  y  e.  RR )
123 0red 10041 . . 3  |-  ( (
ph  /\  y  e.  RR )  ->  0  e.  RR )
12474, 121, 122, 123ltlecasei 10145 . 2  |-  ( (
ph  /\  y  e.  RR )  ->  ( `' ( x  e.  A  |->  B ) " (
y (,) +oo )
)  e.  dom  vol )
125 0red 10041 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  0  <  y )  /\  x  e.  A
)  ->  0  e.  RR )
126 simpll 790 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  y  e.  RR )  /\  0  <  y )  ->  ph )
127126, 1sylan 488 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  0  <  y )  /\  x  e.  A
)  ->  B  e.  RR )
128 simpllr 799 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  0  <  y )  /\  x  e.  A
)  ->  y  e.  RR )
129 maxlt 12024 . . . . . . . . . . . . 13  |-  ( ( 0  e.  RR  /\  B  e.  RR  /\  y  e.  RR )  ->  ( if ( 0  <_  B ,  B ,  0 )  <  y  <->  ( 0  <  y  /\  B  <  y ) ) )
130125, 127, 128, 129syl3anc 1326 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  0  <  y )  /\  x  e.  A
)  ->  ( if ( 0  <_  B ,  B ,  0 )  <  y  <->  ( 0  <  y  /\  B  <  y ) ) )
131 simplr 792 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  0  <  y )  /\  x  e.  A
)  ->  0  <  y )
132131biantrurd 529 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  0  <  y )  /\  x  e.  A
)  ->  ( B  <  y  <->  ( 0  < 
y  /\  B  <  y ) ) )
133130, 132bitr4d 271 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  0  <  y )  /\  x  e.  A
)  ->  ( if ( 0  <_  B ,  B ,  0 )  <  y  <->  B  <  y ) )
134126, 7sylan 488 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  0  <  y )  /\  x  e.  A
)  ->  if (
0  <_  B ,  B ,  0 )  e.  RR )
135134biantrurd 529 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  0  <  y )  /\  x  e.  A
)  ->  ( if ( 0  <_  B ,  B ,  0 )  <  y  <->  ( if ( 0  <_  B ,  B ,  0 )  e.  RR  /\  if ( 0  <_  B ,  B ,  0 )  <  y ) ) )
136127biantrurd 529 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  0  <  y )  /\  x  e.  A
)  ->  ( B  <  y  <->  ( B  e.  RR  /\  B  < 
y ) ) )
137133, 135, 1363bitr3d 298 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  0  <  y )  /\  x  e.  A
)  ->  ( ( if ( 0  <_  B ,  B ,  0 )  e.  RR  /\  if ( 0  <_  B ,  B ,  0 )  <  y )  <->  ( B  e.  RR  /\  B  < 
y ) ) )
138128rexrd 10089 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  0  <  y )  /\  x  e.  A
)  ->  y  e.  RR* )
139 elioomnf 12268 . . . . . . . . . . 11  |-  ( y  e.  RR*  ->  ( if ( 0  <_  B ,  B ,  0 )  e.  ( -oo (,) y )  <->  ( if ( 0  <_  B ,  B ,  0 )  e.  RR  /\  if ( 0  <_  B ,  B ,  0 )  <  y ) ) )
140138, 139syl 17 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  0  <  y )  /\  x  e.  A
)  ->  ( if ( 0  <_  B ,  B ,  0 )  e.  ( -oo (,) y )  <->  ( if ( 0  <_  B ,  B ,  0 )  e.  RR  /\  if ( 0  <_  B ,  B ,  0 )  <  y ) ) )
141 elioomnf 12268 . . . . . . . . . . 11  |-  ( y  e.  RR*  ->  ( B  e.  ( -oo (,) y )  <->  ( B  e.  RR  /\  B  < 
y ) ) )
142138, 141syl 17 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  0  <  y )  /\  x  e.  A
)  ->  ( B  e.  ( -oo (,) y
)  <->  ( B  e.  RR  /\  B  < 
y ) ) )
143137, 140, 1423bitr4d 300 . . . . . . . . 9  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  0  <  y )  /\  x  e.  A
)  ->  ( if ( 0  <_  B ,  B ,  0 )  e.  ( -oo (,) y )  <->  B  e.  ( -oo (,) y ) ) )
14499eleq1d 2686 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  (
( ( x  e.  A  |->  if ( 0  <_  B ,  B ,  0 ) ) `
 x )  e.  ( -oo (,) y
)  <->  if ( 0  <_  B ,  B , 
0 )  e.  ( -oo (,) y ) ) )
145126, 144sylan 488 . . . . . . . . 9  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  0  <  y )  /\  x  e.  A
)  ->  ( (
( x  e.  A  |->  if ( 0  <_  B ,  B , 
0 ) ) `  x )  e.  ( -oo (,) y )  <-> 
if ( 0  <_  B ,  B , 
0 )  e.  ( -oo (,) y ) ) )
14644eleq1d 2686 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  (
( ( x  e.  A  |->  B ) `  x )  e.  ( -oo (,) y )  <-> 
B  e.  ( -oo (,) y ) ) )
147126, 146sylan 488 . . . . . . . . 9  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  0  <  y )  /\  x  e.  A
)  ->  ( (
( x  e.  A  |->  B ) `  x
)  e.  ( -oo (,) y )  <->  B  e.  ( -oo (,) y ) ) )
148143, 145, 1473bitr4d 300 . . . . . . . 8  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  0  <  y )  /\  x  e.  A
)  ->  ( (
( x  e.  A  |->  if ( 0  <_  B ,  B , 
0 ) ) `  x )  e.  ( -oo (,) y )  <-> 
( ( x  e.  A  |->  B ) `  x )  e.  ( -oo (,) y ) ) )
149148pm5.32da 673 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  RR )  /\  0  <  y )  ->  (
( x  e.  A  /\  ( ( x  e.  A  |->  if ( 0  <_  B ,  B ,  0 ) ) `
 x )  e.  ( -oo (,) y
) )  <->  ( x  e.  A  /\  (
( x  e.  A  |->  B ) `  x
)  e.  ( -oo (,) y ) ) ) )
150 elpreima 6337 . . . . . . . . 9  |-  ( ( x  e.  A  |->  if ( 0  <_  B ,  B ,  0 ) )  Fn  A  -> 
( x  e.  ( `' ( x  e.  A  |->  if ( 0  <_  B ,  B ,  0 ) )
" ( -oo (,) y ) )  <->  ( x  e.  A  /\  (
( x  e.  A  |->  if ( 0  <_  B ,  B , 
0 ) ) `  x )  e.  ( -oo (,) y ) ) ) )
151105, 106, 1503syl 18 . . . . . . . 8  |-  ( ph  ->  ( x  e.  ( `' ( x  e.  A  |->  if ( 0  <_  B ,  B ,  0 ) )
" ( -oo (,) y ) )  <->  ( x  e.  A  /\  (
( x  e.  A  |->  if ( 0  <_  B ,  B , 
0 ) ) `  x )  e.  ( -oo (,) y ) ) ) )
152151ad2antrr 762 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  RR )  /\  0  <  y )  ->  (
x  e.  ( `' ( x  e.  A  |->  if ( 0  <_  B ,  B , 
0 ) ) "
( -oo (,) y ) )  <->  ( x  e.  A  /\  ( ( x  e.  A  |->  if ( 0  <_  B ,  B ,  0 ) ) `  x )  e.  ( -oo (,) y ) ) ) )
153 elpreima 6337 . . . . . . . . 9  |-  ( ( x  e.  A  |->  B )  Fn  A  -> 
( x  e.  ( `' ( x  e.  A  |->  B ) "
( -oo (,) y ) )  <->  ( x  e.  A  /\  ( ( x  e.  A  |->  B ) `  x )  e.  ( -oo (,) y ) ) ) )
1543, 54, 1533syl 18 . . . . . . . 8  |-  ( ph  ->  ( x  e.  ( `' ( x  e.  A  |->  B ) "
( -oo (,) y ) )  <->  ( x  e.  A  /\  ( ( x  e.  A  |->  B ) `  x )  e.  ( -oo (,) y ) ) ) )
155154ad2antrr 762 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  RR )  /\  0  <  y )  ->  (
x  e.  ( `' ( x  e.  A  |->  B ) " ( -oo (,) y ) )  <-> 
( x  e.  A  /\  ( ( x  e.  A  |->  B ) `  x )  e.  ( -oo (,) y ) ) ) )
156149, 152, 1553bitr4d 300 . . . . . 6  |-  ( ( ( ph  /\  y  e.  RR )  /\  0  <  y )  ->  (
x  e.  ( `' ( x  e.  A  |->  if ( 0  <_  B ,  B , 
0 ) ) "
( -oo (,) y ) )  <->  x  e.  ( `' ( x  e.  A  |->  B ) "
( -oo (,) y ) ) ) )
157156alrimiv 1855 . . . . 5  |-  ( ( ( ph  /\  y  e.  RR )  /\  0  <  y )  ->  A. x
( x  e.  ( `' ( x  e.  A  |->  if ( 0  <_  B ,  B ,  0 ) )
" ( -oo (,) y ) )  <->  x  e.  ( `' ( x  e.  A  |->  B ) "
( -oo (,) y ) ) ) )
158 nfcv 2764 . . . . . . 7  |-  F/_ x
( -oo (,) y )
159114, 158nfima 5474 . . . . . 6  |-  F/_ x
( `' ( x  e.  A  |->  if ( 0  <_  B ,  B ,  0 ) ) " ( -oo (,) y ) )
16065, 158nfima 5474 . . . . . 6  |-  F/_ x
( `' ( x  e.  A  |->  B )
" ( -oo (,) y ) )
161159, 160cleqf 2790 . . . . 5  |-  ( ( `' ( x  e.  A  |->  if ( 0  <_  B ,  B ,  0 ) )
" ( -oo (,) y ) )  =  ( `' ( x  e.  A  |->  B )
" ( -oo (,) y ) )  <->  A. x
( x  e.  ( `' ( x  e.  A  |->  if ( 0  <_  B ,  B ,  0 ) )
" ( -oo (,) y ) )  <->  x  e.  ( `' ( x  e.  A  |->  B ) "
( -oo (,) y ) ) ) )
162157, 161sylibr 224 . . . 4  |-  ( ( ( ph  /\  y  e.  RR )  /\  0  <  y )  ->  ( `' ( x  e.  A  |->  if ( 0  <_  B ,  B ,  0 ) )
" ( -oo (,) y ) )  =  ( `' ( x  e.  A  |->  B )
" ( -oo (,) y ) ) )
163 mbfima 23399 . . . . . 6  |-  ( ( ( x  e.  A  |->  if ( 0  <_  B ,  B , 
0 ) )  e. MblFn  /\  ( x  e.  A  |->  if ( 0  <_  B ,  B , 
0 ) ) : A --> RR )  -> 
( `' ( x  e.  A  |->  if ( 0  <_  B ,  B ,  0 ) ) " ( -oo (,) y ) )  e. 
dom  vol )
1644, 105, 163syl2anc 693 . . . . 5  |-  ( ph  ->  ( `' ( x  e.  A  |->  if ( 0  <_  B ,  B ,  0 ) ) " ( -oo (,) y ) )  e. 
dom  vol )
165164ad2antrr 762 . . . 4  |-  ( ( ( ph  /\  y  e.  RR )  /\  0  <  y )  ->  ( `' ( x  e.  A  |->  if ( 0  <_  B ,  B ,  0 ) )
" ( -oo (,) y ) )  e. 
dom  vol )
166162, 165eqeltrrd 2702 . . 3  |-  ( ( ( ph  /\  y  e.  RR )  /\  0  <  y )  ->  ( `' ( x  e.  A  |->  B ) "
( -oo (,) y ) )  e.  dom  vol )
167 simplr 792 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  y  <_  0 )  /\  x  e.  A
)  ->  y  <_  0 )
168 simpllr 799 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  y  <_  0 )  /\  x  e.  A
)  ->  y  e.  RR )
169168le0neg1d 10599 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  y  <_  0 )  /\  x  e.  A
)  ->  ( y  <_  0  <->  0  <_  -u y
) )
170167, 169mpbid 222 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  y  <_  0 )  /\  x  e.  A
)  ->  0  <_  -u y )
171170biantrurd 529 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  y  <_  0 )  /\  x  e.  A
)  ->  ( -u B  <_ 
-u y  <->  ( 0  <_  -u y  /\  -u B  <_ 
-u y ) ) )
172 simpll 790 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  y  e.  RR )  /\  y  <_  0 )  ->  ph )
173172, 1sylan 488 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  y  <_  0 )  /\  x  e.  A
)  ->  B  e.  RR )
174168, 173lenegd 10606 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  y  <_  0 )  /\  x  e.  A
)  ->  ( y  <_  B  <->  -u B  <_  -u y
) )
175 0red 10041 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  y  <_  0 )  /\  x  e.  A
)  ->  0  e.  RR )
176173renegcld 10457 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  y  <_  0 )  /\  x  e.  A
)  ->  -u B  e.  RR )
177168renegcld 10457 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  y  <_  0 )  /\  x  e.  A
)  ->  -u y  e.  RR )
178 maxle 12022 . . . . . . . . . . . . . . 15  |-  ( ( 0  e.  RR  /\  -u B  e.  RR  /\  -u y  e.  RR )  ->  ( if ( 0  <_  -u B ,  -u B ,  0 )  <_  -u y  <->  ( 0  <_  -u y  /\  -u B  <_ 
-u y ) ) )
179175, 176, 177, 178syl3anc 1326 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  y  <_  0 )  /\  x  e.  A
)  ->  ( if ( 0  <_  -u B ,  -u B ,  0 )  <_  -u y  <->  ( 0  <_  -u y  /\  -u B  <_ 
-u y ) ) )
180171, 174, 1793bitr4rd 301 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  y  <_  0 )  /\  x  e.  A
)  ->  ( if ( 0  <_  -u B ,  -u B ,  0 )  <_  -u y  <->  y  <_  B ) )
181180notbid 308 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  y  <_  0 )  /\  x  e.  A
)  ->  ( -.  if ( 0  <_  -u B ,  -u B ,  0 )  <_  -u y  <->  -.  y  <_  B ) )
182172, 25sylan 488 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  y  <_  0 )  /\  x  e.  A
)  ->  if (
0  <_  -u B ,  -u B ,  0 )  e.  RR )
183177, 182ltnled 10184 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  y  <_  0 )  /\  x  e.  A
)  ->  ( -u y  <  if ( 0  <_  -u B ,  -u B ,  0 )  <->  -.  if ( 0  <_  -u B ,  -u B ,  0 )  <_  -u y ) )
184173, 168ltnled 10184 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  y  <_  0 )  /\  x  e.  A
)  ->  ( B  <  y  <->  -.  y  <_  B ) )
185181, 183, 1843bitr4d 300 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  y  <_  0 )  /\  x  e.  A
)  ->  ( -u y  <  if ( 0  <_  -u B ,  -u B ,  0 )  <->  B  <  y ) )
186182biantrurd 529 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  y  <_  0 )  /\  x  e.  A
)  ->  ( -u y  <  if ( 0  <_  -u B ,  -u B ,  0 )  <->  ( if ( 0  <_  -u B ,  -u B ,  0 )  e.  RR  /\  -u y  <  if ( 0  <_  -u B ,  -u B ,  0 ) ) ) )
187173biantrurd 529 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  y  <_  0 )  /\  x  e.  A
)  ->  ( B  <  y  <->  ( B  e.  RR  /\  B  < 
y ) ) )
188185, 186, 1873bitr3d 298 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  y  <_  0 )  /\  x  e.  A
)  ->  ( ( if ( 0  <_  -u B ,  -u B ,  0 )  e.  RR  /\  -u y  <  if ( 0  <_  -u B ,  -u B ,  0 ) )  <->  ( B  e.  RR  /\  B  < 
y ) ) )
189177rexrd 10089 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  y  <_  0 )  /\  x  e.  A
)  ->  -u y  e. 
RR* )
190 elioopnf 12267 . . . . . . . . . . 11  |-  ( -u y  e.  RR*  ->  ( if ( 0  <_  -u B ,  -u B ,  0 )  e.  ( -u y (,) +oo )  <->  ( if ( 0  <_  -u B ,  -u B ,  0 )  e.  RR  /\  -u y  <  if ( 0  <_  -u B ,  -u B ,  0 ) ) ) )
191189, 190syl 17 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  y  <_  0 )  /\  x  e.  A
)  ->  ( if ( 0  <_  -u B ,  -u B ,  0 )  e.  ( -u y (,) +oo )  <->  ( if ( 0  <_  -u B ,  -u B ,  0 )  e.  RR  /\  -u y  <  if ( 0  <_  -u B ,  -u B ,  0 ) ) ) )
192168rexrd 10089 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  y  <_  0 )  /\  x  e.  A
)  ->  y  e.  RR* )
193192, 141syl 17 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  y  <_  0 )  /\  x  e.  A
)  ->  ( B  e.  ( -oo (,) y
)  <->  ( B  e.  RR  /\  B  < 
y ) ) )
194188, 191, 1933bitr4d 300 . . . . . . . . 9  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  y  <_  0 )  /\  x  e.  A
)  ->  ( if ( 0  <_  -u B ,  -u B ,  0 )  e.  ( -u y (,) +oo )  <->  B  e.  ( -oo (,) y ) ) )
19540eleq1d 2686 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  (
( ( x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) ) `  x )  e.  ( -u y (,) +oo )  <->  if (
0  <_  -u B ,  -u B ,  0 )  e.  ( -u y (,) +oo ) ) )
196172, 195sylan 488 . . . . . . . . 9  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  y  <_  0 )  /\  x  e.  A
)  ->  ( (
( x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) ) `
 x )  e.  ( -u y (,) +oo )  <->  if ( 0  <_  -u B ,  -u B ,  0 )  e.  ( -u y (,) +oo ) ) )
197172, 146sylan 488 . . . . . . . . 9  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  y  <_  0 )  /\  x  e.  A
)  ->  ( (
( x  e.  A  |->  B ) `  x
)  e.  ( -oo (,) y )  <->  B  e.  ( -oo (,) y ) ) )
198194, 196, 1973bitr4d 300 . . . . . . . 8  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  y  <_  0 )  /\  x  e.  A
)  ->  ( (
( x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) ) `
 x )  e.  ( -u y (,) +oo )  <->  ( ( x  e.  A  |->  B ) `
 x )  e.  ( -oo (,) y
) ) )
199198pm5.32da 673 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  RR )  /\  y  <_  0 )  ->  (
( x  e.  A  /\  ( ( x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) ) `  x )  e.  ( -u y (,) +oo ) )  <->  ( x  e.  A  /\  (
( x  e.  A  |->  B ) `  x
)  e.  ( -oo (,) y ) ) ) )
200 elpreima 6337 . . . . . . . . 9  |-  ( ( x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) )  Fn  A  ->  ( x  e.  ( `' ( x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) ) " ( -u y (,) +oo ) )  <-> 
( x  e.  A  /\  ( ( x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) ) `  x )  e.  ( -u y (,) +oo ) ) ) )
20149, 50, 2003syl 18 . . . . . . . 8  |-  ( ph  ->  ( x  e.  ( `' ( x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) ) " ( -u y (,) +oo ) )  <-> 
( x  e.  A  /\  ( ( x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) ) `  x )  e.  ( -u y (,) +oo ) ) ) )
202201ad2antrr 762 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  RR )  /\  y  <_  0 )  ->  (
x  e.  ( `' ( x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) )
" ( -u y (,) +oo ) )  <->  ( x  e.  A  /\  (
( x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) ) `
 x )  e.  ( -u y (,) +oo ) ) ) )
203154ad2antrr 762 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  RR )  /\  y  <_  0 )  ->  (
x  e.  ( `' ( x  e.  A  |->  B ) " ( -oo (,) y ) )  <-> 
( x  e.  A  /\  ( ( x  e.  A  |->  B ) `  x )  e.  ( -oo (,) y ) ) ) )
204199, 202, 2033bitr4d 300 . . . . . 6  |-  ( ( ( ph  /\  y  e.  RR )  /\  y  <_  0 )  ->  (
x  e.  ( `' ( x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) )
" ( -u y (,) +oo ) )  <->  x  e.  ( `' ( x  e.  A  |->  B ) "
( -oo (,) y ) ) ) )
205204alrimiv 1855 . . . . 5  |-  ( ( ( ph  /\  y  e.  RR )  /\  y  <_  0 )  ->  A. x
( x  e.  ( `' ( x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) ) " ( -u y (,) +oo ) )  <-> 
x  e.  ( `' ( x  e.  A  |->  B ) " ( -oo (,) y ) ) ) )
206 nfcv 2764 . . . . . . 7  |-  F/_ x
( -u y (,) +oo )
20761, 206nfima 5474 . . . . . 6  |-  F/_ x
( `' ( x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) ) " ( -u y (,) +oo ) )
208207, 160cleqf 2790 . . . . 5  |-  ( ( `' ( x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) ) " ( -u y (,) +oo ) )  =  ( `' ( x  e.  A  |->  B ) " ( -oo (,) y ) )  <->  A. x
( x  e.  ( `' ( x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) ) " ( -u y (,) +oo ) )  <-> 
x  e.  ( `' ( x  e.  A  |->  B ) " ( -oo (,) y ) ) ) )
209205, 208sylibr 224 . . . 4  |-  ( ( ( ph  /\  y  e.  RR )  /\  y  <_  0 )  ->  ( `' ( x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) ) " ( -u y (,) +oo ) )  =  ( `' ( x  e.  A  |->  B ) " ( -oo (,) y ) ) )
210 mbfima 23399 . . . . . 6  |-  ( ( ( x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) )  e. MblFn  /\  ( x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) ) : A --> RR )  ->  ( `' ( x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) ) " ( -u y (,) +oo )
)  e.  dom  vol )
21170, 49, 210syl2anc 693 . . . . 5  |-  ( ph  ->  ( `' ( x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) ) " ( -u y (,) +oo ) )  e.  dom  vol )
212211ad2antrr 762 . . . 4  |-  ( ( ( ph  /\  y  e.  RR )  /\  y  <_  0 )  ->  ( `' ( x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) ) " ( -u y (,) +oo ) )  e.  dom  vol )
213209, 212eqeltrrd 2702 . . 3  |-  ( ( ( ph  /\  y  e.  RR )  /\  y  <_  0 )  ->  ( `' ( x  e.  A  |->  B ) "
( -oo (,) y ) )  e.  dom  vol )
214166, 213, 123, 122ltlecasei 10145 . 2  |-  ( (
ph  /\  y  e.  RR )  ->  ( `' ( x  e.  A  |->  B ) " ( -oo (,) y ) )  e.  dom  vol )
2153, 8, 124, 214ismbf2d 23408 1  |-  ( ph  ->  ( x  e.  A  |->  B )  e. MblFn )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384   A.wal 1481    = wceq 1483    e. wcel 1990   ifcif 4086   class class class wbr 4653    |-> cmpt 4729   `'ccnv 5113   dom cdm 5114   "cima 5117    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650   RRcr 9935   0cc0 9936   +oocpnf 10071   -oocmnf 10072   RR*cxr 10073    < clt 10074    <_ cle 10075   -ucneg 10267   (,)cioo 12175   volcvol 23232  MblFncmbf 23383
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-xadd 11947  df-ioo 12179  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-xmet 19739  df-met 19740  df-ovol 23233  df-vol 23234  df-mbf 23388
This theorem is referenced by:  mbfposb  23420
  Copyright terms: Public domain W3C validator