Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  clsneiel1 Structured version   Visualization version   Unicode version

Theorem clsneiel1 38406
Description: If a (pseudo-)closure function and a (pseudo-)neighborhood function are related by the  H operator, then membership in the closure of a subset is equivalent to the complement of the subset not being a neighborhood of the point. (Contributed by RP, 7-Jun-2021.)
Hypotheses
Ref Expression
clsnei.o  |-  O  =  ( i  e.  _V ,  j  e.  _V  |->  ( k  e.  ( ~P j  ^m  i
)  |->  ( l  e.  j  |->  { m  e.  i  |  l  e.  ( k `  m
) } ) ) )
clsnei.p  |-  P  =  ( n  e.  _V  |->  ( p  e.  ( ~P n  ^m  ~P n
)  |->  ( o  e. 
~P n  |->  ( n 
\  ( p `  ( n  \  o
) ) ) ) ) )
clsnei.d  |-  D  =  ( P `  B
)
clsnei.f  |-  F  =  ( ~P B O B )
clsnei.h  |-  H  =  ( F  o.  D
)
clsnei.r  |-  ( ph  ->  K H N )
clsneiel.x  |-  ( ph  ->  X  e.  B )
clsneiel.s  |-  ( ph  ->  S  e.  ~P B
)
Assertion
Ref Expression
clsneiel1  |-  ( ph  ->  ( X  e.  ( K `  S )  <->  -.  ( B  \  S
)  e.  ( N `
 X ) ) )
Distinct variable groups:    B, i,
j, k, l, m    B, n, o, p    D, i, j, k, l, m    D, n, o, p    i, F, j, k, l    n, F, o, p    i, K, j, k, l, m   
n, K, o, p   
i, N, j, k, l    n, N, o, p    S, m    S, o    X, l, m    ph, i,
j, k, l    ph, n, o, p
Allowed substitution hints:    ph( m)    P( i, j, k, m, n, o, p, l)    S( i, j, k, n, p, l)    F( m)    H( i,
j, k, m, n, o, p, l)    N( m)    O( i, j, k, m, n, o, p, l)    X( i, j, k, n, o, p)

Proof of Theorem clsneiel1
StepHypRef Expression
1 clsnei.d . . . 4  |-  D  =  ( P `  B
)
2 clsnei.h . . . 4  |-  H  =  ( F  o.  D
)
3 clsnei.r . . . 4  |-  ( ph  ->  K H N )
41, 2, 3clsneibex 38400 . . 3  |-  ( ph  ->  B  e.  _V )
54ancli 574 . 2  |-  ( ph  ->  ( ph  /\  B  e.  _V ) )
6 clsnei.o . . . . . 6  |-  O  =  ( i  e.  _V ,  j  e.  _V  |->  ( k  e.  ( ~P j  ^m  i
)  |->  ( l  e.  j  |->  { m  e.  i  |  l  e.  ( k `  m
) } ) ) )
7 simpr 477 . . . . . . 7  |-  ( (
ph  /\  B  e.  _V )  ->  B  e. 
_V )
8 pwexg 4850 . . . . . . 7  |-  ( B  e.  _V  ->  ~P B  e.  _V )
97, 8syl 17 . . . . . 6  |-  ( (
ph  /\  B  e.  _V )  ->  ~P B  e.  _V )
10 clsnei.f . . . . . 6  |-  F  =  ( ~P B O B )
116, 9, 7, 10fsovfd 38306 . . . . 5  |-  ( (
ph  /\  B  e.  _V )  ->  F :
( ~P B  ^m  ~P B ) --> ( ~P ~P B  ^m  B
) )
1211ffnd 6046 . . . 4  |-  ( (
ph  /\  B  e.  _V )  ->  F  Fn  ( ~P B  ^m  ~P B ) )
13 clsnei.p . . . . . 6  |-  P  =  ( n  e.  _V  |->  ( p  e.  ( ~P n  ^m  ~P n
)  |->  ( o  e. 
~P n  |->  ( n 
\  ( p `  ( n  \  o
) ) ) ) ) )
1413, 1, 7dssmapf1od 38315 . . . . 5  |-  ( (
ph  /\  B  e.  _V )  ->  D :
( ~P B  ^m  ~P B ) -1-1-onto-> ( ~P B  ^m  ~P B ) )
15 f1of 6137 . . . . 5  |-  ( D : ( ~P B  ^m  ~P B ) -1-1-onto-> ( ~P B  ^m  ~P B
)  ->  D :
( ~P B  ^m  ~P B ) --> ( ~P B  ^m  ~P B
) )
1614, 15syl 17 . . . 4  |-  ( (
ph  /\  B  e.  _V )  ->  D :
( ~P B  ^m  ~P B ) --> ( ~P B  ^m  ~P B
) )
172breqi 4659 . . . . . 6  |-  ( K H N  <->  K ( F  o.  D ) N )
183, 17sylib 208 . . . . 5  |-  ( ph  ->  K ( F  o.  D ) N )
1918adantr 481 . . . 4  |-  ( (
ph  /\  B  e.  _V )  ->  K ( F  o.  D ) N )
2012, 16, 19brcoffn 38328 . . 3  |-  ( (
ph  /\  B  e.  _V )  ->  ( K D ( D `  K )  /\  ( D `  K ) F N ) )
2120ancli 574 . 2  |-  ( (
ph  /\  B  e.  _V )  ->  ( (
ph  /\  B  e.  _V )  /\  ( K D ( D `  K )  /\  ( D `  K ) F N ) ) )
22 simprl 794 . . . 4  |-  ( ( ( ph  /\  B  e.  _V )  /\  ( K D ( D `  K )  /\  ( D `  K ) F N ) )  ->  K D ( D `  K ) )
23 clsneiel.x . . . . 5  |-  ( ph  ->  X  e.  B )
2423ad2antrr 762 . . . 4  |-  ( ( ( ph  /\  B  e.  _V )  /\  ( K D ( D `  K )  /\  ( D `  K ) F N ) )  ->  X  e.  B )
25 clsneiel.s . . . . 5  |-  ( ph  ->  S  e.  ~P B
)
2625ad2antrr 762 . . . 4  |-  ( ( ( ph  /\  B  e.  _V )  /\  ( K D ( D `  K )  /\  ( D `  K ) F N ) )  ->  S  e.  ~P B
)
2713, 1, 22, 24, 26ntrclselnel1 38355 . . 3  |-  ( ( ( ph  /\  B  e.  _V )  /\  ( K D ( D `  K )  /\  ( D `  K ) F N ) )  -> 
( X  e.  ( K `  S )  <->  -.  X  e.  (
( D `  K
) `  ( B  \  S ) ) ) )
28 simprr 796 . . . . 5  |-  ( ( ( ph  /\  B  e.  _V )  /\  ( K D ( D `  K )  /\  ( D `  K ) F N ) )  -> 
( D `  K
) F N )
29 simplr 792 . . . . . 6  |-  ( ( ( ph  /\  B  e.  _V )  /\  ( K D ( D `  K )  /\  ( D `  K ) F N ) )  ->  B  e.  _V )
30 difssd 3738 . . . . . 6  |-  ( ( ( ph  /\  B  e.  _V )  /\  ( K D ( D `  K )  /\  ( D `  K ) F N ) )  -> 
( B  \  S
)  C_  B )
3129, 30sselpwd 4807 . . . . 5  |-  ( ( ( ph  /\  B  e.  _V )  /\  ( K D ( D `  K )  /\  ( D `  K ) F N ) )  -> 
( B  \  S
)  e.  ~P B
)
326, 10, 28, 24, 31ntrneiel 38379 . . . 4  |-  ( ( ( ph  /\  B  e.  _V )  /\  ( K D ( D `  K )  /\  ( D `  K ) F N ) )  -> 
( X  e.  ( ( D `  K
) `  ( B  \  S ) )  <->  ( B  \  S )  e.  ( N `  X ) ) )
3332notbid 308 . . 3  |-  ( ( ( ph  /\  B  e.  _V )  /\  ( K D ( D `  K )  /\  ( D `  K ) F N ) )  -> 
( -.  X  e.  ( ( D `  K ) `  ( B  \  S ) )  <->  -.  ( B  \  S
)  e.  ( N `
 X ) ) )
3427, 33bitrd 268 . 2  |-  ( ( ( ph  /\  B  e.  _V )  /\  ( K D ( D `  K )  /\  ( D `  K ) F N ) )  -> 
( X  e.  ( K `  S )  <->  -.  ( B  \  S
)  e.  ( N `
 X ) ) )
355, 21, 343syl 18 1  |-  ( ph  ->  ( X  e.  ( K `  S )  <->  -.  ( B  \  S
)  e.  ( N `
 X ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   {crab 2916   _Vcvv 3200    \ cdif 3571   ~Pcpw 4158   class class class wbr 4653    |-> cmpt 4729    o. ccom 5118   -->wf 5884   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652    ^m cmap 7857
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-map 7859
This theorem is referenced by:  clsneiel2  38407  clsneifv4  38409
  Copyright terms: Public domain W3C validator