MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwlksfv Structured version   Visualization version   Unicode version

Theorem clwwlksfv 26916
Description: Lemma 2 for clwwlksbij 26920: the value of function F. (Contributed by Alexander van der Vekens, 28-Sep-2018.) (Revised by AV, 26-Apr-2021.)
Hypotheses
Ref Expression
clwwlksbij.d  |-  D  =  { w  e.  ( N WWalksN  G )  |  ( lastS  `  w )  =  ( w `  0 ) }
clwwlksbij.f  |-  F  =  ( t  e.  D  |->  ( t substr  <. 0 ,  N >. ) )
Assertion
Ref Expression
clwwlksfv  |-  ( W  e.  D  ->  ( F `  W )  =  ( W substr  <. 0 ,  N >. ) )
Distinct variable groups:    w, G    w, N    t, D    t, G, w    t, N    t, W
Allowed substitution hints:    D( w)    F( w, t)    W( w)

Proof of Theorem clwwlksfv
StepHypRef Expression
1 oveq1 6657 . 2  |-  ( t  =  W  ->  (
t substr  <. 0 ,  N >. )  =  ( W substr  <. 0 ,  N >. ) )
2 clwwlksbij.f . 2  |-  F  =  ( t  e.  D  |->  ( t substr  <. 0 ,  N >. ) )
3 ovex 6678 . 2  |-  ( W substr  <. 0 ,  N >. )  e.  _V
41, 2, 3fvmpt 6282 1  |-  ( W  e.  D  ->  ( F `  W )  =  ( W substr  <. 0 ,  N >. ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990   {crab 2916   <.cop 4183    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650   0cc0 9936   lastS clsw 13292   substr csubstr 13295   WWalksN cwwlksn 26718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653
This theorem is referenced by:  clwwlksf1  26917  clwwlksfo  26918
  Copyright terms: Public domain W3C validator