MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwlksf1 Structured version   Visualization version   Unicode version

Theorem clwwlksf1 26917
Description: Lemma 3 for clwwlksbij 26920: F is a 1-1 function. (Contributed by AV, 28-Sep-2018.) (Revised by AV, 26-Apr-2021.)
Hypotheses
Ref Expression
clwwlksbij.d  |-  D  =  { w  e.  ( N WWalksN  G )  |  ( lastS  `  w )  =  ( w `  0 ) }
clwwlksbij.f  |-  F  =  ( t  e.  D  |->  ( t substr  <. 0 ,  N >. ) )
Assertion
Ref Expression
clwwlksf1  |-  ( N  e.  NN  ->  F : D -1-1-> ( N ClWWalksN  G ) )
Distinct variable groups:    w, G    w, N    t, D    t, G, w    t, N
Allowed substitution hints:    D( w)    F( w, t)

Proof of Theorem clwwlksf1
Dummy variables  i  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 clwwlksbij.d . . 3  |-  D  =  { w  e.  ( N WWalksN  G )  |  ( lastS  `  w )  =  ( w `  0 ) }
2 clwwlksbij.f . . 3  |-  F  =  ( t  e.  D  |->  ( t substr  <. 0 ,  N >. ) )
31, 2clwwlksf 26915 . 2  |-  ( N  e.  NN  ->  F : D --> ( N ClWWalksN  G ) )
41, 2clwwlksfv 26916 . . . . . 6  |-  ( x  e.  D  ->  ( F `  x )  =  ( x substr  <. 0 ,  N >. ) )
51, 2clwwlksfv 26916 . . . . . 6  |-  ( y  e.  D  ->  ( F `  y )  =  ( y substr  <. 0 ,  N >. ) )
64, 5eqeqan12d 2638 . . . . 5  |-  ( ( x  e.  D  /\  y  e.  D )  ->  ( ( F `  x )  =  ( F `  y )  <-> 
( x substr  <. 0 ,  N >. )  =  ( y substr  <. 0 ,  N >. ) ) )
76adantl 482 . . . 4  |-  ( ( N  e.  NN  /\  ( x  e.  D  /\  y  e.  D
) )  ->  (
( F `  x
)  =  ( F `
 y )  <->  ( x substr  <.
0 ,  N >. )  =  ( y substr  <. 0 ,  N >. ) ) )
8 fveq2 6191 . . . . . . . . 9  |-  ( w  =  x  ->  ( lastS  `  w )  =  ( lastS  `  x ) )
9 fveq1 6190 . . . . . . . . 9  |-  ( w  =  x  ->  (
w `  0 )  =  ( x ` 
0 ) )
108, 9eqeq12d 2637 . . . . . . . 8  |-  ( w  =  x  ->  (
( lastS  `  w )  =  ( w `  0
)  <->  ( lastS  `  x )  =  ( x ` 
0 ) ) )
1110, 1elrab2 3366 . . . . . . 7  |-  ( x  e.  D  <->  ( x  e.  ( N WWalksN  G )  /\  ( lastS  `  x )  =  ( x ` 
0 ) ) )
12 fveq2 6191 . . . . . . . . 9  |-  ( w  =  y  ->  ( lastS  `  w )  =  ( lastS  `  y ) )
13 fveq1 6190 . . . . . . . . 9  |-  ( w  =  y  ->  (
w `  0 )  =  ( y ` 
0 ) )
1412, 13eqeq12d 2637 . . . . . . . 8  |-  ( w  =  y  ->  (
( lastS  `  w )  =  ( w `  0
)  <->  ( lastS  `  y )  =  ( y ` 
0 ) ) )
1514, 1elrab2 3366 . . . . . . 7  |-  ( y  e.  D  <->  ( y  e.  ( N WWalksN  G )  /\  ( lastS  `  y )  =  ( y ` 
0 ) ) )
1611, 15anbi12i 733 . . . . . 6  |-  ( ( x  e.  D  /\  y  e.  D )  <->  ( ( x  e.  ( N WWalksN  G )  /\  ( lastS  `  x )  =  ( x `  0 ) )  /\  ( y  e.  ( N WWalksN  G
)  /\  ( lastS  `  y
)  =  ( y `
 0 ) ) ) )
17 eqid 2622 . . . . . . . . . 10  |-  (Vtx `  G )  =  (Vtx
`  G )
18 eqid 2622 . . . . . . . . . 10  |-  (Edg `  G )  =  (Edg
`  G )
1917, 18wwlknp 26734 . . . . . . . . 9  |-  ( x  e.  ( N WWalksN  G
)  ->  ( x  e. Word  (Vtx `  G )  /\  ( # `  x
)  =  ( N  +  1 )  /\  A. i  e.  ( 0..^ N ) { ( x `  i ) ,  ( x `  ( i  +  1 ) ) }  e.  (Edg `  G ) ) )
2017, 18wwlknp 26734 . . . . . . . . . . . . 13  |-  ( y  e.  ( N WWalksN  G
)  ->  ( y  e. Word  (Vtx `  G )  /\  ( # `  y
)  =  ( N  +  1 )  /\  A. i  e.  ( 0..^ N ) { ( y `  i ) ,  ( y `  ( i  +  1 ) ) }  e.  (Edg `  G ) ) )
21 simprlr 803 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( y  e. Word 
(Vtx `  G )  /\  ( # `  y
)  =  ( N  +  1 ) )  /\  ( lastS  `  y
)  =  ( y `
 0 ) )  /\  ( ( x  e. Word  (Vtx `  G
)  /\  ( # `  x
)  =  ( N  +  1 ) )  /\  ( lastS  `  x
)  =  ( x `
 0 ) ) )  ->  ( # `  x
)  =  ( N  +  1 ) )
22 simpllr 799 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( y  e. Word 
(Vtx `  G )  /\  ( # `  y
)  =  ( N  +  1 ) )  /\  ( lastS  `  y
)  =  ( y `
 0 ) )  /\  ( ( x  e. Word  (Vtx `  G
)  /\  ( # `  x
)  =  ( N  +  1 ) )  /\  ( lastS  `  x
)  =  ( x `
 0 ) ) )  ->  ( # `  y
)  =  ( N  +  1 ) )
2321, 22eqtr4d 2659 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( y  e. Word 
(Vtx `  G )  /\  ( # `  y
)  =  ( N  +  1 ) )  /\  ( lastS  `  y
)  =  ( y `
 0 ) )  /\  ( ( x  e. Word  (Vtx `  G
)  /\  ( # `  x
)  =  ( N  +  1 ) )  /\  ( lastS  `  x
)  =  ( x `
 0 ) ) )  ->  ( # `  x
)  =  ( # `  y ) )
2423ad2antlr 763 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( N  e.  NN  /\  ( ( ( y  e. Word  (Vtx `  G
)  /\  ( # `  y
)  =  ( N  +  1 ) )  /\  ( lastS  `  y
)  =  ( y `
 0 ) )  /\  ( ( x  e. Word  (Vtx `  G
)  /\  ( # `  x
)  =  ( N  +  1 ) )  /\  ( lastS  `  x
)  =  ( x `
 0 ) ) ) )  /\  (
x substr  <. 0 ,  N >. )  =  ( y substr  <. 0 ,  N >. ) )  ->  ( # `  x
)  =  ( # `  y ) )
25 nncn 11028 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( N  e.  NN  ->  N  e.  CC )
26 ax-1cn 9994 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  1  e.  CC
27 pncan 10287 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( N  e.  CC  /\  1  e.  CC )  ->  ( ( N  + 
1 )  -  1 )  =  N )
2827eqcomd 2628 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( N  e.  CC  /\  1  e.  CC )  ->  N  =  ( ( N  +  1 )  -  1 ) )
2925, 26, 28sylancl 694 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( N  e.  NN  ->  N  =  ( ( N  +  1 )  - 
1 ) )
30 oveq1 6657 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( (
# `  x )  =  ( N  + 
1 )  ->  (
( # `  x )  -  1 )  =  ( ( N  + 
1 )  -  1 ) )
3130eqcomd 2628 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( (
# `  x )  =  ( N  + 
1 )  ->  (
( N  +  1 )  -  1 )  =  ( ( # `  x )  -  1 ) )
3229, 31sylan9eqr 2678 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( # `  x
)  =  ( N  +  1 )  /\  N  e.  NN )  ->  N  =  ( (
# `  x )  -  1 ) )
3332opeq2d 4409 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( # `  x
)  =  ( N  +  1 )  /\  N  e.  NN )  -> 
<. 0 ,  N >.  =  <. 0 ,  ( ( # `  x
)  -  1 )
>. )
3433oveq2d 6666 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( # `  x
)  =  ( N  +  1 )  /\  N  e.  NN )  ->  ( x substr  <. 0 ,  N >. )  =  ( x substr  <. 0 ,  ( ( # `  x
)  -  1 )
>. ) )
3533oveq2d 6666 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( # `  x
)  =  ( N  +  1 )  /\  N  e.  NN )  ->  ( y substr  <. 0 ,  N >. )  =  ( y substr  <. 0 ,  ( ( # `  x
)  -  1 )
>. ) )
3634, 35eqeq12d 2637 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( # `  x
)  =  ( N  +  1 )  /\  N  e.  NN )  ->  ( ( x substr  <. 0 ,  N >. )  =  ( y substr  <. 0 ,  N >. )  <->  ( x substr  <. 0 ,  ( ( # `  x )  -  1 ) >. )  =  ( y substr  <. 0 ,  ( ( # `  x
)  -  1 )
>. ) ) )
3736ex 450 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (
# `  x )  =  ( N  + 
1 )  ->  ( N  e.  NN  ->  ( ( x substr  <. 0 ,  N >. )  =  ( y substr  <. 0 ,  N >. )  <->  ( x substr  <. 0 ,  ( ( # `  x )  -  1 ) >. )  =  ( y substr  <. 0 ,  ( ( # `  x
)  -  1 )
>. ) ) ) )
3837ad2antlr 763 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( x  e. Word  (Vtx `  G )  /\  ( # `
 x )  =  ( N  +  1 ) )  /\  ( lastS  `  x )  =  ( x `  0 ) )  ->  ( N  e.  NN  ->  ( (
x substr  <. 0 ,  N >. )  =  ( y substr  <. 0 ,  N >. )  <-> 
( x substr  <. 0 ,  ( ( # `  x
)  -  1 )
>. )  =  (
y substr  <. 0 ,  ( ( # `  x
)  -  1 )
>. ) ) ) )
3938adantl 482 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( y  e. Word 
(Vtx `  G )  /\  ( # `  y
)  =  ( N  +  1 ) )  /\  ( lastS  `  y
)  =  ( y `
 0 ) )  /\  ( ( x  e. Word  (Vtx `  G
)  /\  ( # `  x
)  =  ( N  +  1 ) )  /\  ( lastS  `  x
)  =  ( x `
 0 ) ) )  ->  ( N  e.  NN  ->  ( (
x substr  <. 0 ,  N >. )  =  ( y substr  <. 0 ,  N >. )  <-> 
( x substr  <. 0 ,  ( ( # `  x
)  -  1 )
>. )  =  (
y substr  <. 0 ,  ( ( # `  x
)  -  1 )
>. ) ) ) )
4039impcom 446 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( N  e.  NN  /\  ( ( ( y  e. Word  (Vtx `  G
)  /\  ( # `  y
)  =  ( N  +  1 ) )  /\  ( lastS  `  y
)  =  ( y `
 0 ) )  /\  ( ( x  e. Word  (Vtx `  G
)  /\  ( # `  x
)  =  ( N  +  1 ) )  /\  ( lastS  `  x
)  =  ( x `
 0 ) ) ) )  ->  (
( x substr  <. 0 ,  N >. )  =  ( y substr  <. 0 ,  N >. )  <->  ( x substr  <. 0 ,  ( ( # `  x )  -  1 ) >. )  =  ( y substr  <. 0 ,  ( ( # `  x
)  -  1 )
>. ) ) )
4140biimpa 501 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( N  e.  NN  /\  ( ( ( y  e. Word  (Vtx `  G
)  /\  ( # `  y
)  =  ( N  +  1 ) )  /\  ( lastS  `  y
)  =  ( y `
 0 ) )  /\  ( ( x  e. Word  (Vtx `  G
)  /\  ( # `  x
)  =  ( N  +  1 ) )  /\  ( lastS  `  x
)  =  ( x `
 0 ) ) ) )  /\  (
x substr  <. 0 ,  N >. )  =  ( y substr  <. 0 ,  N >. ) )  ->  ( x substr  <.
0 ,  ( (
# `  x )  -  1 ) >.
)  =  ( y substr  <. 0 ,  ( (
# `  x )  -  1 ) >.
) )
42 simpll 790 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( y  e. Word  (Vtx `  G )  /\  ( # `
 y )  =  ( N  +  1 ) )  /\  ( lastS  `  y )  =  ( y `  0 ) )  ->  y  e. Word  (Vtx
`  G ) )
43 simpll 790 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( x  e. Word  (Vtx `  G )  /\  ( # `
 x )  =  ( N  +  1 ) )  /\  ( lastS  `  x )  =  ( x `  0 ) )  ->  x  e. Word  (Vtx
`  G ) )
4442, 43anim12ci 591 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( y  e. Word 
(Vtx `  G )  /\  ( # `  y
)  =  ( N  +  1 ) )  /\  ( lastS  `  y
)  =  ( y `
 0 ) )  /\  ( ( x  e. Word  (Vtx `  G
)  /\  ( # `  x
)  =  ( N  +  1 ) )  /\  ( lastS  `  x
)  =  ( x `
 0 ) ) )  ->  ( x  e. Word  (Vtx `  G )  /\  y  e. Word  (Vtx `  G ) ) )
4544adantl 482 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( N  e.  NN  /\  ( ( ( y  e. Word  (Vtx `  G
)  /\  ( # `  y
)  =  ( N  +  1 ) )  /\  ( lastS  `  y
)  =  ( y `
 0 ) )  /\  ( ( x  e. Word  (Vtx `  G
)  /\  ( # `  x
)  =  ( N  +  1 ) )  /\  ( lastS  `  x
)  =  ( x `
 0 ) ) ) )  ->  (
x  e. Word  (Vtx `  G
)  /\  y  e. Word  (Vtx
`  G ) ) )
46 nnnn0 11299 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( N  e.  NN  ->  N  e.  NN0 )
47 0nn0 11307 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  0  e.  NN0
4846, 47jctil 560 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( N  e.  NN  ->  (
0  e.  NN0  /\  N  e.  NN0 ) )
4948adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( N  e.  NN  /\  ( ( ( y  e. Word  (Vtx `  G
)  /\  ( # `  y
)  =  ( N  +  1 ) )  /\  ( lastS  `  y
)  =  ( y `
 0 ) )  /\  ( ( x  e. Word  (Vtx `  G
)  /\  ( # `  x
)  =  ( N  +  1 ) )  /\  ( lastS  `  x
)  =  ( x `
 0 ) ) ) )  ->  (
0  e.  NN0  /\  N  e.  NN0 ) )
50 nnre 11027 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( N  e.  NN  ->  N  e.  RR )
5150lep1d 10955 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( N  e.  NN  ->  N  <_  ( N  +  1 ) )
52 breq2 4657 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( (
# `  x )  =  ( N  + 
1 )  ->  ( N  <_  ( # `  x
)  <->  N  <_  ( N  +  1 ) ) )
5351, 52syl5ibr 236 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( (
# `  x )  =  ( N  + 
1 )  ->  ( N  e.  NN  ->  N  <_  ( # `  x
) ) )
5453ad2antlr 763 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( x  e. Word  (Vtx `  G )  /\  ( # `
 x )  =  ( N  +  1 ) )  /\  ( lastS  `  x )  =  ( x `  0 ) )  ->  ( N  e.  NN  ->  N  <_  (
# `  x )
) )
5554adantl 482 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( y  e. Word 
(Vtx `  G )  /\  ( # `  y
)  =  ( N  +  1 ) )  /\  ( lastS  `  y
)  =  ( y `
 0 ) )  /\  ( ( x  e. Word  (Vtx `  G
)  /\  ( # `  x
)  =  ( N  +  1 ) )  /\  ( lastS  `  x
)  =  ( x `
 0 ) ) )  ->  ( N  e.  NN  ->  N  <_  (
# `  x )
) )
5655impcom 446 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( N  e.  NN  /\  ( ( ( y  e. Word  (Vtx `  G
)  /\  ( # `  y
)  =  ( N  +  1 ) )  /\  ( lastS  `  y
)  =  ( y `
 0 ) )  /\  ( ( x  e. Word  (Vtx `  G
)  /\  ( # `  x
)  =  ( N  +  1 ) )  /\  ( lastS  `  x
)  =  ( x `
 0 ) ) ) )  ->  N  <_  ( # `  x
) )
57 breq2 4657 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( (
# `  y )  =  ( N  + 
1 )  ->  ( N  <_  ( # `  y
)  <->  N  <_  ( N  +  1 ) ) )
5851, 57syl5ibr 236 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( (
# `  y )  =  ( N  + 
1 )  ->  ( N  e.  NN  ->  N  <_  ( # `  y
) ) )
5958ad2antlr 763 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( y  e. Word  (Vtx `  G )  /\  ( # `
 y )  =  ( N  +  1 ) )  /\  ( lastS  `  y )  =  ( y `  0 ) )  ->  ( N  e.  NN  ->  N  <_  (
# `  y )
) )
6059adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( y  e. Word 
(Vtx `  G )  /\  ( # `  y
)  =  ( N  +  1 ) )  /\  ( lastS  `  y
)  =  ( y `
 0 ) )  /\  ( ( x  e. Word  (Vtx `  G
)  /\  ( # `  x
)  =  ( N  +  1 ) )  /\  ( lastS  `  x
)  =  ( x `
 0 ) ) )  ->  ( N  e.  NN  ->  N  <_  (
# `  y )
) )
6160impcom 446 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( N  e.  NN  /\  ( ( ( y  e. Word  (Vtx `  G
)  /\  ( # `  y
)  =  ( N  +  1 ) )  /\  ( lastS  `  y
)  =  ( y `
 0 ) )  /\  ( ( x  e. Word  (Vtx `  G
)  /\  ( # `  x
)  =  ( N  +  1 ) )  /\  ( lastS  `  x
)  =  ( x `
 0 ) ) ) )  ->  N  <_  ( # `  y
) )
62 swrdspsleq 13449 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( x  e. Word  (Vtx `  G )  /\  y  e. Word  (Vtx `  G )
)  /\  ( 0  e.  NN0  /\  N  e. 
NN0 )  /\  ( N  <_  ( # `  x
)  /\  N  <_  (
# `  y )
) )  ->  (
( x substr  <. 0 ,  N >. )  =  ( y substr  <. 0 ,  N >. )  <->  A. i  e.  ( 0..^ N ) ( x `  i )  =  ( y `  i ) ) )
6345, 49, 56, 61, 62syl112anc 1330 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( N  e.  NN  /\  ( ( ( y  e. Word  (Vtx `  G
)  /\  ( # `  y
)  =  ( N  +  1 ) )  /\  ( lastS  `  y
)  =  ( y `
 0 ) )  /\  ( ( x  e. Word  (Vtx `  G
)  /\  ( # `  x
)  =  ( N  +  1 ) )  /\  ( lastS  `  x
)  =  ( x `
 0 ) ) ) )  ->  (
( x substr  <. 0 ,  N >. )  =  ( y substr  <. 0 ,  N >. )  <->  A. i  e.  ( 0..^ N ) ( x `  i )  =  ( y `  i ) ) )
64 lbfzo0 12507 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( 0  e.  ( 0..^ N )  <->  N  e.  NN )
6564biimpri 218 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( N  e.  NN  ->  0  e.  ( 0..^ N ) )
6665adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( N  e.  NN  /\  ( ( ( y  e. Word  (Vtx `  G
)  /\  ( # `  y
)  =  ( N  +  1 ) )  /\  ( lastS  `  y
)  =  ( y `
 0 ) )  /\  ( ( x  e. Word  (Vtx `  G
)  /\  ( # `  x
)  =  ( N  +  1 ) )  /\  ( lastS  `  x
)  =  ( x `
 0 ) ) ) )  ->  0  e.  ( 0..^ N ) )
67 fveq2 6191 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( i  =  0  ->  (
x `  i )  =  ( x ` 
0 ) )
68 fveq2 6191 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( i  =  0  ->  (
y `  i )  =  ( y ` 
0 ) )
6967, 68eqeq12d 2637 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( i  =  0  ->  (
( x `  i
)  =  ( y `
 i )  <->  ( x `  0 )  =  ( y `  0
) ) )
7069rspcv 3305 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( 0  e.  ( 0..^ N )  ->  ( A. i  e.  ( 0..^ N ) ( x `
 i )  =  ( y `  i
)  ->  ( x `  0 )  =  ( y `  0
) ) )
7166, 70syl 17 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( N  e.  NN  /\  ( ( ( y  e. Word  (Vtx `  G
)  /\  ( # `  y
)  =  ( N  +  1 ) )  /\  ( lastS  `  y
)  =  ( y `
 0 ) )  /\  ( ( x  e. Word  (Vtx `  G
)  /\  ( # `  x
)  =  ( N  +  1 ) )  /\  ( lastS  `  x
)  =  ( x `
 0 ) ) ) )  ->  ( A. i  e.  (
0..^ N ) ( x `  i )  =  ( y `  i )  ->  (
x `  0 )  =  ( y ` 
0 ) ) )
7263, 71sylbid 230 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( N  e.  NN  /\  ( ( ( y  e. Word  (Vtx `  G
)  /\  ( # `  y
)  =  ( N  +  1 ) )  /\  ( lastS  `  y
)  =  ( y `
 0 ) )  /\  ( ( x  e. Word  (Vtx `  G
)  /\  ( # `  x
)  =  ( N  +  1 ) )  /\  ( lastS  `  x
)  =  ( x `
 0 ) ) ) )  ->  (
( x substr  <. 0 ,  N >. )  =  ( y substr  <. 0 ,  N >. )  ->  ( x `  0 )  =  ( y `  0
) ) )
7372imp 445 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( N  e.  NN  /\  ( ( ( y  e. Word  (Vtx `  G
)  /\  ( # `  y
)  =  ( N  +  1 ) )  /\  ( lastS  `  y
)  =  ( y `
 0 ) )  /\  ( ( x  e. Word  (Vtx `  G
)  /\  ( # `  x
)  =  ( N  +  1 ) )  /\  ( lastS  `  x
)  =  ( x `
 0 ) ) ) )  /\  (
x substr  <. 0 ,  N >. )  =  ( y substr  <. 0 ,  N >. ) )  ->  ( x `  0 )  =  ( y `  0
) )
74 simpr 477 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( x  e. Word  (Vtx `  G )  /\  ( # `
 x )  =  ( N  +  1 ) )  /\  ( lastS  `  x )  =  ( x `  0 ) )  ->  ( lastS  `  x
)  =  ( x `
 0 ) )
75 simpr 477 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( y  e. Word  (Vtx `  G )  /\  ( # `
 y )  =  ( N  +  1 ) )  /\  ( lastS  `  y )  =  ( y `  0 ) )  ->  ( lastS  `  y
)  =  ( y `
 0 ) )
7674, 75eqeqan12rd 2640 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( y  e. Word 
(Vtx `  G )  /\  ( # `  y
)  =  ( N  +  1 ) )  /\  ( lastS  `  y
)  =  ( y `
 0 ) )  /\  ( ( x  e. Word  (Vtx `  G
)  /\  ( # `  x
)  =  ( N  +  1 ) )  /\  ( lastS  `  x
)  =  ( x `
 0 ) ) )  ->  ( ( lastS  `  x )  =  ( lastS  `  y )  <->  ( x `  0 )  =  ( y `  0
) ) )
7776ad2antlr 763 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( N  e.  NN  /\  ( ( ( y  e. Word  (Vtx `  G
)  /\  ( # `  y
)  =  ( N  +  1 ) )  /\  ( lastS  `  y
)  =  ( y `
 0 ) )  /\  ( ( x  e. Word  (Vtx `  G
)  /\  ( # `  x
)  =  ( N  +  1 ) )  /\  ( lastS  `  x
)  =  ( x `
 0 ) ) ) )  /\  (
x substr  <. 0 ,  N >. )  =  ( y substr  <. 0 ,  N >. ) )  ->  ( ( lastS  `  x )  =  ( lastS  `  y )  <->  ( x `  0 )  =  ( y `  0
) ) )
7873, 77mpbird 247 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( N  e.  NN  /\  ( ( ( y  e. Word  (Vtx `  G
)  /\  ( # `  y
)  =  ( N  +  1 ) )  /\  ( lastS  `  y
)  =  ( y `
 0 ) )  /\  ( ( x  e. Word  (Vtx `  G
)  /\  ( # `  x
)  =  ( N  +  1 ) )  /\  ( lastS  `  x
)  =  ( x `
 0 ) ) ) )  /\  (
x substr  <. 0 ,  N >. )  =  ( y substr  <. 0 ,  N >. ) )  ->  ( lastS  `  x
)  =  ( lastS  `  y
) )
7924, 41, 78jca32 558 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( N  e.  NN  /\  ( ( ( y  e. Word  (Vtx `  G
)  /\  ( # `  y
)  =  ( N  +  1 ) )  /\  ( lastS  `  y
)  =  ( y `
 0 ) )  /\  ( ( x  e. Word  (Vtx `  G
)  /\  ( # `  x
)  =  ( N  +  1 ) )  /\  ( lastS  `  x
)  =  ( x `
 0 ) ) ) )  /\  (
x substr  <. 0 ,  N >. )  =  ( y substr  <. 0 ,  N >. ) )  ->  ( ( # `
 x )  =  ( # `  y
)  /\  ( (
x substr  <. 0 ,  ( ( # `  x
)  -  1 )
>. )  =  (
y substr  <. 0 ,  ( ( # `  x
)  -  1 )
>. )  /\  ( lastS  `  x )  =  ( lastS  `  y ) ) ) )
8043adantl 482 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( y  e. Word 
(Vtx `  G )  /\  ( # `  y
)  =  ( N  +  1 ) )  /\  ( lastS  `  y
)  =  ( y `
 0 ) )  /\  ( ( x  e. Word  (Vtx `  G
)  /\  ( # `  x
)  =  ( N  +  1 ) )  /\  ( lastS  `  x
)  =  ( x `
 0 ) ) )  ->  x  e. Word  (Vtx
`  G ) )
8180adantl 482 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( N  e.  NN  /\  ( ( ( y  e. Word  (Vtx `  G
)  /\  ( # `  y
)  =  ( N  +  1 ) )  /\  ( lastS  `  y
)  =  ( y `
 0 ) )  /\  ( ( x  e. Word  (Vtx `  G
)  /\  ( # `  x
)  =  ( N  +  1 ) )  /\  ( lastS  `  x
)  =  ( x `
 0 ) ) ) )  ->  x  e. Word  (Vtx `  G )
)
8242adantr 481 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( y  e. Word 
(Vtx `  G )  /\  ( # `  y
)  =  ( N  +  1 ) )  /\  ( lastS  `  y
)  =  ( y `
 0 ) )  /\  ( ( x  e. Word  (Vtx `  G
)  /\  ( # `  x
)  =  ( N  +  1 ) )  /\  ( lastS  `  x
)  =  ( x `
 0 ) ) )  ->  y  e. Word  (Vtx
`  G ) )
8382adantl 482 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( N  e.  NN  /\  ( ( ( y  e. Word  (Vtx `  G
)  /\  ( # `  y
)  =  ( N  +  1 ) )  /\  ( lastS  `  y
)  =  ( y `
 0 ) )  /\  ( ( x  e. Word  (Vtx `  G
)  /\  ( # `  x
)  =  ( N  +  1 ) )  /\  ( lastS  `  x
)  =  ( x `
 0 ) ) ) )  ->  y  e. Word  (Vtx `  G )
)
84 1red 10055 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( N  e.  NN  ->  1  e.  RR )
85 nngt0 11049 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( N  e.  NN  ->  0  <  N )
86 0lt1 10550 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  0  <  1
8786a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( N  e.  NN  ->  0  <  1 )
8850, 84, 85, 87addgt0d 10602 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( N  e.  NN  ->  0  <  ( N  +  1 ) )
89 breq2 4657 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( (
# `  x )  =  ( N  + 
1 )  ->  (
0  <  ( # `  x
)  <->  0  <  ( N  +  1 ) ) )
9088, 89syl5ibr 236 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( (
# `  x )  =  ( N  + 
1 )  ->  ( N  e.  NN  ->  0  <  ( # `  x
) ) )
9190ad2antlr 763 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( x  e. Word  (Vtx `  G )  /\  ( # `
 x )  =  ( N  +  1 ) )  /\  ( lastS  `  x )  =  ( x `  0 ) )  ->  ( N  e.  NN  ->  0  <  (
# `  x )
) )
9291adantl 482 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( y  e. Word 
(Vtx `  G )  /\  ( # `  y
)  =  ( N  +  1 ) )  /\  ( lastS  `  y
)  =  ( y `
 0 ) )  /\  ( ( x  e. Word  (Vtx `  G
)  /\  ( # `  x
)  =  ( N  +  1 ) )  /\  ( lastS  `  x
)  =  ( x `
 0 ) ) )  ->  ( N  e.  NN  ->  0  <  (
# `  x )
) )
9392impcom 446 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( N  e.  NN  /\  ( ( ( y  e. Word  (Vtx `  G
)  /\  ( # `  y
)  =  ( N  +  1 ) )  /\  ( lastS  `  y
)  =  ( y `
 0 ) )  /\  ( ( x  e. Word  (Vtx `  G
)  /\  ( # `  x
)  =  ( N  +  1 ) )  /\  ( lastS  `  x
)  =  ( x `
 0 ) ) ) )  ->  0  <  ( # `  x
) )
9481, 83, 933jca 1242 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( N  e.  NN  /\  ( ( ( y  e. Word  (Vtx `  G
)  /\  ( # `  y
)  =  ( N  +  1 ) )  /\  ( lastS  `  y
)  =  ( y `
 0 ) )  /\  ( ( x  e. Word  (Vtx `  G
)  /\  ( # `  x
)  =  ( N  +  1 ) )  /\  ( lastS  `  x
)  =  ( x `
 0 ) ) ) )  ->  (
x  e. Word  (Vtx `  G
)  /\  y  e. Word  (Vtx
`  G )  /\  0  <  ( # `  x
) ) )
9594adantr 481 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( N  e.  NN  /\  ( ( ( y  e. Word  (Vtx `  G
)  /\  ( # `  y
)  =  ( N  +  1 ) )  /\  ( lastS  `  y
)  =  ( y `
 0 ) )  /\  ( ( x  e. Word  (Vtx `  G
)  /\  ( # `  x
)  =  ( N  +  1 ) )  /\  ( lastS  `  x
)  =  ( x `
 0 ) ) ) )  /\  (
x substr  <. 0 ,  N >. )  =  ( y substr  <. 0 ,  N >. ) )  ->  ( x  e. Word  (Vtx `  G )  /\  y  e. Word  (Vtx `  G )  /\  0  <  ( # `  x
) ) )
96 2swrd1eqwrdeq 13454 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e. Word  (Vtx `  G )  /\  y  e. Word  (Vtx `  G )  /\  0  <  ( # `  x ) )  -> 
( x  =  y  <-> 
( ( # `  x
)  =  ( # `  y )  /\  (
( x substr  <. 0 ,  ( ( # `  x
)  -  1 )
>. )  =  (
y substr  <. 0 ,  ( ( # `  x
)  -  1 )
>. )  /\  ( lastS  `  x )  =  ( lastS  `  y ) ) ) ) )
9795, 96syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( N  e.  NN  /\  ( ( ( y  e. Word  (Vtx `  G
)  /\  ( # `  y
)  =  ( N  +  1 ) )  /\  ( lastS  `  y
)  =  ( y `
 0 ) )  /\  ( ( x  e. Word  (Vtx `  G
)  /\  ( # `  x
)  =  ( N  +  1 ) )  /\  ( lastS  `  x
)  =  ( x `
 0 ) ) ) )  /\  (
x substr  <. 0 ,  N >. )  =  ( y substr  <. 0 ,  N >. ) )  ->  ( x  =  y  <->  ( ( # `  x )  =  (
# `  y )  /\  ( ( x substr  <. 0 ,  ( ( # `  x )  -  1 ) >. )  =  ( y substr  <. 0 ,  ( ( # `  x
)  -  1 )
>. )  /\  ( lastS  `  x )  =  ( lastS  `  y ) ) ) ) )
9879, 97mpbird 247 . . . . . . . . . . . . . . . . 17  |-  ( ( ( N  e.  NN  /\  ( ( ( y  e. Word  (Vtx `  G
)  /\  ( # `  y
)  =  ( N  +  1 ) )  /\  ( lastS  `  y
)  =  ( y `
 0 ) )  /\  ( ( x  e. Word  (Vtx `  G
)  /\  ( # `  x
)  =  ( N  +  1 ) )  /\  ( lastS  `  x
)  =  ( x `
 0 ) ) ) )  /\  (
x substr  <. 0 ,  N >. )  =  ( y substr  <. 0 ,  N >. ) )  ->  x  =  y )
9998exp31 630 . . . . . . . . . . . . . . . 16  |-  ( N  e.  NN  ->  (
( ( ( y  e. Word  (Vtx `  G
)  /\  ( # `  y
)  =  ( N  +  1 ) )  /\  ( lastS  `  y
)  =  ( y `
 0 ) )  /\  ( ( x  e. Word  (Vtx `  G
)  /\  ( # `  x
)  =  ( N  +  1 ) )  /\  ( lastS  `  x
)  =  ( x `
 0 ) ) )  ->  ( (
x substr  <. 0 ,  N >. )  =  ( y substr  <. 0 ,  N >. )  ->  x  =  y ) ) )
10099expdcom 455 . . . . . . . . . . . . . . 15  |-  ( ( ( y  e. Word  (Vtx `  G )  /\  ( # `
 y )  =  ( N  +  1 ) )  /\  ( lastS  `  y )  =  ( y `  0 ) )  ->  ( (
( x  e. Word  (Vtx `  G )  /\  ( # `
 x )  =  ( N  +  1 ) )  /\  ( lastS  `  x )  =  ( x `  0 ) )  ->  ( N  e.  NN  ->  ( (
x substr  <. 0 ,  N >. )  =  ( y substr  <. 0 ,  N >. )  ->  x  =  y ) ) ) )
101100ex 450 . . . . . . . . . . . . . 14  |-  ( ( y  e. Word  (Vtx `  G )  /\  ( # `
 y )  =  ( N  +  1 ) )  ->  (
( lastS  `  y )  =  ( y `  0
)  ->  ( (
( x  e. Word  (Vtx `  G )  /\  ( # `
 x )  =  ( N  +  1 ) )  /\  ( lastS  `  x )  =  ( x `  0 ) )  ->  ( N  e.  NN  ->  ( (
x substr  <. 0 ,  N >. )  =  ( y substr  <. 0 ,  N >. )  ->  x  =  y ) ) ) ) )
1021013adant3 1081 . . . . . . . . . . . . 13  |-  ( ( y  e. Word  (Vtx `  G )  /\  ( # `
 y )  =  ( N  +  1 )  /\  A. i  e.  ( 0..^ N ) { ( y `  i ) ,  ( y `  ( i  +  1 ) ) }  e.  (Edg `  G ) )  -> 
( ( lastS  `  y
)  =  ( y `
 0 )  -> 
( ( ( x  e. Word  (Vtx `  G
)  /\  ( # `  x
)  =  ( N  +  1 ) )  /\  ( lastS  `  x
)  =  ( x `
 0 ) )  ->  ( N  e.  NN  ->  ( (
x substr  <. 0 ,  N >. )  =  ( y substr  <. 0 ,  N >. )  ->  x  =  y ) ) ) ) )
10320, 102syl 17 . . . . . . . . . . . 12  |-  ( y  e.  ( N WWalksN  G
)  ->  ( ( lastS  `  y )  =  ( y `  0 )  ->  ( ( ( x  e. Word  (Vtx `  G )  /\  ( # `
 x )  =  ( N  +  1 ) )  /\  ( lastS  `  x )  =  ( x `  0 ) )  ->  ( N  e.  NN  ->  ( (
x substr  <. 0 ,  N >. )  =  ( y substr  <. 0 ,  N >. )  ->  x  =  y ) ) ) ) )
104103imp 445 . . . . . . . . . . 11  |-  ( ( y  e.  ( N WWalksN  G )  /\  ( lastS  `  y )  =  ( y `  0 ) )  ->  ( (
( x  e. Word  (Vtx `  G )  /\  ( # `
 x )  =  ( N  +  1 ) )  /\  ( lastS  `  x )  =  ( x `  0 ) )  ->  ( N  e.  NN  ->  ( (
x substr  <. 0 ,  N >. )  =  ( y substr  <. 0 ,  N >. )  ->  x  =  y ) ) ) )
105104expdcom 455 . . . . . . . . . 10  |-  ( ( x  e. Word  (Vtx `  G )  /\  ( # `
 x )  =  ( N  +  1 ) )  ->  (
( lastS  `  x )  =  ( x `  0
)  ->  ( (
y  e.  ( N WWalksN  G )  /\  ( lastS  `  y )  =  ( y `  0 ) )  ->  ( N  e.  NN  ->  ( (
x substr  <. 0 ,  N >. )  =  ( y substr  <. 0 ,  N >. )  ->  x  =  y ) ) ) ) )
1061053adant3 1081 . . . . . . . . 9  |-  ( ( x  e. Word  (Vtx `  G )  /\  ( # `
 x )  =  ( N  +  1 )  /\  A. i  e.  ( 0..^ N ) { ( x `  i ) ,  ( x `  ( i  +  1 ) ) }  e.  (Edg `  G ) )  -> 
( ( lastS  `  x
)  =  ( x `
 0 )  -> 
( ( y  e.  ( N WWalksN  G )  /\  ( lastS  `  y )  =  ( y ` 
0 ) )  -> 
( N  e.  NN  ->  ( ( x substr  <. 0 ,  N >. )  =  ( y substr  <. 0 ,  N >. )  ->  x  =  y ) ) ) ) )
10719, 106syl 17 . . . . . . . 8  |-  ( x  e.  ( N WWalksN  G
)  ->  ( ( lastS  `  x )  =  ( x `  0 )  ->  ( ( y  e.  ( N WWalksN  G
)  /\  ( lastS  `  y
)  =  ( y `
 0 ) )  ->  ( N  e.  NN  ->  ( (
x substr  <. 0 ,  N >. )  =  ( y substr  <. 0 ,  N >. )  ->  x  =  y ) ) ) ) )
108107imp31 448 . . . . . . 7  |-  ( ( ( x  e.  ( N WWalksN  G )  /\  ( lastS  `  x )  =  ( x `  0 ) )  /\  ( y  e.  ( N WWalksN  G
)  /\  ( lastS  `  y
)  =  ( y `
 0 ) ) )  ->  ( N  e.  NN  ->  ( (
x substr  <. 0 ,  N >. )  =  ( y substr  <. 0 ,  N >. )  ->  x  =  y ) ) )
109108com12 32 . . . . . 6  |-  ( N  e.  NN  ->  (
( ( x  e.  ( N WWalksN  G )  /\  ( lastS  `  x )  =  ( x ` 
0 ) )  /\  ( y  e.  ( N WWalksN  G )  /\  ( lastS  `  y )  =  ( y `  0 ) ) )  ->  (
( x substr  <. 0 ,  N >. )  =  ( y substr  <. 0 ,  N >. )  ->  x  =  y ) ) )
11016, 109syl5bi 232 . . . . 5  |-  ( N  e.  NN  ->  (
( x  e.  D  /\  y  e.  D
)  ->  ( (
x substr  <. 0 ,  N >. )  =  ( y substr  <. 0 ,  N >. )  ->  x  =  y ) ) )
111110imp 445 . . . 4  |-  ( ( N  e.  NN  /\  ( x  e.  D  /\  y  e.  D
) )  ->  (
( x substr  <. 0 ,  N >. )  =  ( y substr  <. 0 ,  N >. )  ->  x  =  y ) )
1127, 111sylbid 230 . . 3  |-  ( ( N  e.  NN  /\  ( x  e.  D  /\  y  e.  D
) )  ->  (
( F `  x
)  =  ( F `
 y )  ->  x  =  y )
)
113112ralrimivva 2971 . 2  |-  ( N  e.  NN  ->  A. x  e.  D  A. y  e.  D  ( ( F `  x )  =  ( F `  y )  ->  x  =  y ) )
114 dff13 6512 . 2  |-  ( F : D -1-1-> ( N ClWWalksN  G )  <->  ( F : D --> ( N ClWWalksN  G )  /\  A. x  e.  D  A. y  e.  D  ( ( F `
 x )  =  ( F `  y
)  ->  x  =  y ) ) )
1153, 113, 114sylanbrc 698 1  |-  ( N  e.  NN  ->  F : D -1-1-> ( N ClWWalksN  G ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   {crab 2916   {cpr 4179   <.cop 4183   class class class wbr 4653    |-> cmpt 4729   -->wf 5884   -1-1->wf1 5885   ` cfv 5888  (class class class)co 6650   CCcc 9934   0cc0 9936   1c1 9937    + caddc 9939    < clt 10074    <_ cle 10075    - cmin 10266   NNcn 11020   NN0cn0 11292  ..^cfzo 12465   #chash 13117  Word cword 13291   lastS clsw 13292   substr csubstr 13295  Vtxcvtx 25874  Edgcedg 25939   WWalksN cwwlksn 26718   ClWWalksN cclwwlksn 26876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-lsw 13300  df-s1 13302  df-substr 13303  df-wwlks 26722  df-wwlksn 26723  df-clwwlks 26877  df-clwwlksn 26878
This theorem is referenced by:  clwwlksf1o  26919
  Copyright terms: Public domain W3C validator