MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwlksfo Structured version   Visualization version   Unicode version

Theorem clwwlksfo 26918
Description: Lemma 4 for clwwlksbij 26920: F is an onto function. (Contributed by Alexander van der Vekens, 29-Sep-2018.) (Revised by AV, 26-Apr-2021.)
Hypotheses
Ref Expression
clwwlksbij.d  |-  D  =  { w  e.  ( N WWalksN  G )  |  ( lastS  `  w )  =  ( w `  0 ) }
clwwlksbij.f  |-  F  =  ( t  e.  D  |->  ( t substr  <. 0 ,  N >. ) )
Assertion
Ref Expression
clwwlksfo  |-  ( N  e.  NN  ->  F : D -onto-> ( N ClWWalksN  G ) )
Distinct variable groups:    w, G    w, N    t, D    t, G, w    t, N
Allowed substitution hints:    D( w)    F( w, t)

Proof of Theorem clwwlksfo
Dummy variables  i  x  p are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 clwwlksbij.d . . 3  |-  D  =  { w  e.  ( N WWalksN  G )  |  ( lastS  `  w )  =  ( w `  0 ) }
2 clwwlksbij.f . . 3  |-  F  =  ( t  e.  D  |->  ( t substr  <. 0 ,  N >. ) )
31, 2clwwlksf 26915 . 2  |-  ( N  e.  NN  ->  F : D --> ( N ClWWalksN  G ) )
4 eqid 2622 . . . . . . . 8  |-  (Vtx `  G )  =  (Vtx
`  G )
5 eqid 2622 . . . . . . . 8  |-  (Edg `  G )  =  (Edg
`  G )
64, 5clwwlknp 26887 . . . . . . 7  |-  ( p  e.  ( N ClWWalksN  G )  ->  ( ( p  e. Word  (Vtx `  G
)  /\  ( # `  p
)  =  N )  /\  A. i  e.  ( 0..^ ( N  -  1 ) ) { ( p `  i ) ,  ( p `  ( i  +  1 ) ) }  e.  (Edg `  G )  /\  {
( lastS  `  p ) ,  ( p `  0
) }  e.  (Edg
`  G ) ) )
7 simpr 477 . . . . . . . . . 10  |-  ( ( ( ( p  e. Word 
(Vtx `  G )  /\  ( # `  p
)  =  N )  /\  A. i  e.  ( 0..^ ( N  -  1 ) ) { ( p `  i ) ,  ( p `  ( i  +  1 ) ) }  e.  (Edg `  G )  /\  {
( lastS  `  p ) ,  ( p `  0
) }  e.  (Edg
`  G ) )  /\  N  e.  NN )  ->  N  e.  NN )
8 simpl1 1064 . . . . . . . . . 10  |-  ( ( ( ( p  e. Word 
(Vtx `  G )  /\  ( # `  p
)  =  N )  /\  A. i  e.  ( 0..^ ( N  -  1 ) ) { ( p `  i ) ,  ( p `  ( i  +  1 ) ) }  e.  (Edg `  G )  /\  {
( lastS  `  p ) ,  ( p `  0
) }  e.  (Edg
`  G ) )  /\  N  e.  NN )  ->  ( p  e. Word 
(Vtx `  G )  /\  ( # `  p
)  =  N ) )
9 3simpc 1060 . . . . . . . . . . 11  |-  ( ( ( p  e. Word  (Vtx `  G )  /\  ( # `
 p )  =  N )  /\  A. i  e.  ( 0..^ ( N  -  1 ) ) { ( p `  i ) ,  ( p `  ( i  +  1 ) ) }  e.  (Edg `  G )  /\  { ( lastS  `  p ) ,  ( p ` 
0 ) }  e.  (Edg `  G ) )  ->  ( A. i  e.  ( 0..^ ( N  -  1 ) ) { ( p `  i ) ,  ( p `  ( i  +  1 ) ) }  e.  (Edg `  G )  /\  {
( lastS  `  p ) ,  ( p `  0
) }  e.  (Edg
`  G ) ) )
109adantr 481 . . . . . . . . . 10  |-  ( ( ( ( p  e. Word 
(Vtx `  G )  /\  ( # `  p
)  =  N )  /\  A. i  e.  ( 0..^ ( N  -  1 ) ) { ( p `  i ) ,  ( p `  ( i  +  1 ) ) }  e.  (Edg `  G )  /\  {
( lastS  `  p ) ,  ( p `  0
) }  e.  (Edg
`  G ) )  /\  N  e.  NN )  ->  ( A. i  e.  ( 0..^ ( N  -  1 ) ) { ( p `  i ) ,  ( p `  ( i  +  1 ) ) }  e.  (Edg `  G )  /\  {
( lastS  `  p ) ,  ( p `  0
) }  e.  (Edg
`  G ) ) )
111clwwlksel 26914 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  ( p  e. Word  (Vtx `  G )  /\  ( # `
 p )  =  N )  /\  ( A. i  e.  (
0..^ ( N  - 
1 ) ) { ( p `  i
) ,  ( p `
 ( i  +  1 ) ) }  e.  (Edg `  G
)  /\  { ( lastS  `  p ) ,  ( p `  0 ) }  e.  (Edg `  G ) ) )  ->  ( p ++  <" ( p `  0
) "> )  e.  D )
127, 8, 10, 11syl3anc 1326 . . . . . . . . 9  |-  ( ( ( ( p  e. Word 
(Vtx `  G )  /\  ( # `  p
)  =  N )  /\  A. i  e.  ( 0..^ ( N  -  1 ) ) { ( p `  i ) ,  ( p `  ( i  +  1 ) ) }  e.  (Edg `  G )  /\  {
( lastS  `  p ) ,  ( p `  0
) }  e.  (Edg
`  G ) )  /\  N  e.  NN )  ->  ( p ++  <" ( p `  0
) "> )  e.  D )
13 opeq2 4403 . . . . . . . . . . . . . . 15  |-  ( N  =  ( # `  p
)  ->  <. 0 ,  N >.  =  <. 0 ,  ( # `  p
) >. )
1413eqcoms 2630 . . . . . . . . . . . . . 14  |-  ( (
# `  p )  =  N  ->  <. 0 ,  N >.  =  <. 0 ,  ( # `  p
) >. )
1514oveq2d 6666 . . . . . . . . . . . . 13  |-  ( (
# `  p )  =  N  ->  ( ( p ++  <" ( p `
 0 ) "> ) substr  <. 0 ,  N >. )  =  ( ( p ++  <" (
p `  0 ) "> ) substr  <. 0 ,  ( # `  p
) >. ) )
1615adantl 482 . . . . . . . . . . . 12  |-  ( ( p  e. Word  (Vtx `  G )  /\  ( # `
 p )  =  N )  ->  (
( p ++  <" (
p `  0 ) "> ) substr  <. 0 ,  N >. )  =  ( ( p ++  <" (
p `  0 ) "> ) substr  <. 0 ,  ( # `  p
) >. ) )
17163ad2ant1 1082 . . . . . . . . . . 11  |-  ( ( ( p  e. Word  (Vtx `  G )  /\  ( # `
 p )  =  N )  /\  A. i  e.  ( 0..^ ( N  -  1 ) ) { ( p `  i ) ,  ( p `  ( i  +  1 ) ) }  e.  (Edg `  G )  /\  { ( lastS  `  p ) ,  ( p ` 
0 ) }  e.  (Edg `  G ) )  ->  ( ( p ++ 
<" ( p ` 
0 ) "> ) substr  <. 0 ,  N >. )  =  ( ( p ++  <" ( p `
 0 ) "> ) substr  <. 0 ,  ( # `  p
) >. ) )
1817adantr 481 . . . . . . . . . 10  |-  ( ( ( ( p  e. Word 
(Vtx `  G )  /\  ( # `  p
)  =  N )  /\  A. i  e.  ( 0..^ ( N  -  1 ) ) { ( p `  i ) ,  ( p `  ( i  +  1 ) ) }  e.  (Edg `  G )  /\  {
( lastS  `  p ) ,  ( p `  0
) }  e.  (Edg
`  G ) )  /\  N  e.  NN )  ->  ( ( p ++ 
<" ( p ` 
0 ) "> ) substr  <. 0 ,  N >. )  =  ( ( p ++  <" ( p `
 0 ) "> ) substr  <. 0 ,  ( # `  p
) >. ) )
19 simpll 790 . . . . . . . . . . . . 13  |-  ( ( ( p  e. Word  (Vtx `  G )  /\  ( # `
 p )  =  N )  /\  N  e.  NN )  ->  p  e. Word  (Vtx `  G )
)
20 fstwrdne0 13345 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  NN  /\  ( p  e. Word  (Vtx `  G )  /\  ( # `
 p )  =  N ) )  -> 
( p `  0
)  e.  (Vtx `  G ) )
2120ancoms 469 . . . . . . . . . . . . . 14  |-  ( ( ( p  e. Word  (Vtx `  G )  /\  ( # `
 p )  =  N )  /\  N  e.  NN )  ->  (
p `  0 )  e.  (Vtx `  G )
)
2221s1cld 13383 . . . . . . . . . . . . 13  |-  ( ( ( p  e. Word  (Vtx `  G )  /\  ( # `
 p )  =  N )  /\  N  e.  NN )  ->  <" (
p `  0 ) ">  e. Word  (Vtx `  G
) )
2319, 22jca 554 . . . . . . . . . . . 12  |-  ( ( ( p  e. Word  (Vtx `  G )  /\  ( # `
 p )  =  N )  /\  N  e.  NN )  ->  (
p  e. Word  (Vtx `  G
)  /\  <" (
p `  0 ) ">  e. Word  (Vtx `  G
) ) )
24233ad2antl1 1223 . . . . . . . . . . 11  |-  ( ( ( ( p  e. Word 
(Vtx `  G )  /\  ( # `  p
)  =  N )  /\  A. i  e.  ( 0..^ ( N  -  1 ) ) { ( p `  i ) ,  ( p `  ( i  +  1 ) ) }  e.  (Edg `  G )  /\  {
( lastS  `  p ) ,  ( p `  0
) }  e.  (Edg
`  G ) )  /\  N  e.  NN )  ->  ( p  e. Word 
(Vtx `  G )  /\  <" ( p `
 0 ) ">  e. Word  (Vtx `  G
) ) )
25 swrdccat1 13457 . . . . . . . . . . 11  |-  ( ( p  e. Word  (Vtx `  G )  /\  <" ( p `  0
) ">  e. Word  (Vtx
`  G ) )  ->  ( ( p ++ 
<" ( p ` 
0 ) "> ) substr  <. 0 ,  (
# `  p ) >. )  =  p )
2624, 25syl 17 . . . . . . . . . 10  |-  ( ( ( ( p  e. Word 
(Vtx `  G )  /\  ( # `  p
)  =  N )  /\  A. i  e.  ( 0..^ ( N  -  1 ) ) { ( p `  i ) ,  ( p `  ( i  +  1 ) ) }  e.  (Edg `  G )  /\  {
( lastS  `  p ) ,  ( p `  0
) }  e.  (Edg
`  G ) )  /\  N  e.  NN )  ->  ( ( p ++ 
<" ( p ` 
0 ) "> ) substr  <. 0 ,  (
# `  p ) >. )  =  p )
2718, 26eqtr2d 2657 . . . . . . . . 9  |-  ( ( ( ( p  e. Word 
(Vtx `  G )  /\  ( # `  p
)  =  N )  /\  A. i  e.  ( 0..^ ( N  -  1 ) ) { ( p `  i ) ,  ( p `  ( i  +  1 ) ) }  e.  (Edg `  G )  /\  {
( lastS  `  p ) ,  ( p `  0
) }  e.  (Edg
`  G ) )  /\  N  e.  NN )  ->  p  =  ( ( p ++  <" (
p `  0 ) "> ) substr  <. 0 ,  N >. ) )
2812, 27jca 554 . . . . . . . 8  |-  ( ( ( ( p  e. Word 
(Vtx `  G )  /\  ( # `  p
)  =  N )  /\  A. i  e.  ( 0..^ ( N  -  1 ) ) { ( p `  i ) ,  ( p `  ( i  +  1 ) ) }  e.  (Edg `  G )  /\  {
( lastS  `  p ) ,  ( p `  0
) }  e.  (Edg
`  G ) )  /\  N  e.  NN )  ->  ( ( p ++ 
<" ( p ` 
0 ) "> )  e.  D  /\  p  =  ( (
p ++  <" ( p `
 0 ) "> ) substr  <. 0 ,  N >. ) ) )
2928ex 450 . . . . . . 7  |-  ( ( ( p  e. Word  (Vtx `  G )  /\  ( # `
 p )  =  N )  /\  A. i  e.  ( 0..^ ( N  -  1 ) ) { ( p `  i ) ,  ( p `  ( i  +  1 ) ) }  e.  (Edg `  G )  /\  { ( lastS  `  p ) ,  ( p ` 
0 ) }  e.  (Edg `  G ) )  ->  ( N  e.  NN  ->  ( (
p ++  <" ( p `
 0 ) "> )  e.  D  /\  p  =  (
( p ++  <" (
p `  0 ) "> ) substr  <. 0 ,  N >. ) ) ) )
306, 29syl 17 . . . . . 6  |-  ( p  e.  ( N ClWWalksN  G )  ->  ( N  e.  NN  ->  ( (
p ++  <" ( p `
 0 ) "> )  e.  D  /\  p  =  (
( p ++  <" (
p `  0 ) "> ) substr  <. 0 ,  N >. ) ) ) )
3130impcom 446 . . . . 5  |-  ( ( N  e.  NN  /\  p  e.  ( N ClWWalksN  G ) )  ->  (
( p ++  <" (
p `  0 ) "> )  e.  D  /\  p  =  (
( p ++  <" (
p `  0 ) "> ) substr  <. 0 ,  N >. ) ) )
32 oveq1 6657 . . . . . . 7  |-  ( x  =  ( p ++  <" ( p `  0
) "> )  ->  ( x substr  <. 0 ,  N >. )  =  ( ( p ++  <" (
p `  0 ) "> ) substr  <. 0 ,  N >. ) )
3332eqeq2d 2632 . . . . . 6  |-  ( x  =  ( p ++  <" ( p `  0
) "> )  ->  ( p  =  ( x substr  <. 0 ,  N >. )  <->  p  =  (
( p ++  <" (
p `  0 ) "> ) substr  <. 0 ,  N >. ) ) )
3433rspcev 3309 . . . . 5  |-  ( ( ( p ++  <" (
p `  0 ) "> )  e.  D  /\  p  =  (
( p ++  <" (
p `  0 ) "> ) substr  <. 0 ,  N >. ) )  ->  E. x  e.  D  p  =  ( x substr  <.
0 ,  N >. ) )
3531, 34syl 17 . . . 4  |-  ( ( N  e.  NN  /\  p  e.  ( N ClWWalksN  G ) )  ->  E. x  e.  D  p  =  ( x substr  <. 0 ,  N >. ) )
361, 2clwwlksfv 26916 . . . . . . 7  |-  ( x  e.  D  ->  ( F `  x )  =  ( x substr  <. 0 ,  N >. ) )
3736eqeq2d 2632 . . . . . 6  |-  ( x  e.  D  ->  (
p  =  ( F `
 x )  <->  p  =  ( x substr  <. 0 ,  N >. ) ) )
3837adantl 482 . . . . 5  |-  ( ( ( N  e.  NN  /\  p  e.  ( N ClWWalksN  G ) )  /\  x  e.  D )  ->  ( p  =  ( F `  x )  <-> 
p  =  ( x substr  <. 0 ,  N >. ) ) )
3938rexbidva 3049 . . . 4  |-  ( ( N  e.  NN  /\  p  e.  ( N ClWWalksN  G ) )  ->  ( E. x  e.  D  p  =  ( F `  x )  <->  E. x  e.  D  p  =  ( x substr  <. 0 ,  N >. ) ) )
4035, 39mpbird 247 . . 3  |-  ( ( N  e.  NN  /\  p  e.  ( N ClWWalksN  G ) )  ->  E. x  e.  D  p  =  ( F `  x ) )
4140ralrimiva 2966 . 2  |-  ( N  e.  NN  ->  A. p  e.  ( N ClWWalksN  G ) E. x  e.  D  p  =  ( F `  x ) )
42 dffo3 6374 . 2  |-  ( F : D -onto-> ( N ClWWalksN  G )  <->  ( F : D --> ( N ClWWalksN  G )  /\  A. p  e.  ( N ClWWalksN  G ) E. x  e.  D  p  =  ( F `  x ) ) )
433, 41, 42sylanbrc 698 1  |-  ( N  e.  NN  ->  F : D -onto-> ( N ClWWalksN  G ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   {crab 2916   {cpr 4179   <.cop 4183    |-> cmpt 4729   -->wf 5884   -onto->wfo 5886   ` cfv 5888  (class class class)co 6650   0cc0 9936   1c1 9937    + caddc 9939    - cmin 10266   NNcn 11020  ..^cfzo 12465   #chash 13117  Word cword 13291   lastS clsw 13292   ++ cconcat 13293   <"cs1 13294   substr csubstr 13295  Vtxcvtx 25874  Edgcedg 25939   WWalksN cwwlksn 26718   ClWWalksN cclwwlksn 26876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-lsw 13300  df-concat 13301  df-s1 13302  df-substr 13303  df-wwlks 26722  df-wwlksn 26723  df-clwwlks 26877  df-clwwlksn 26878
This theorem is referenced by:  clwwlksf1o  26919
  Copyright terms: Public domain W3C validator