Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnvtrrel Structured version   Visualization version   Unicode version

Theorem cnvtrrel 37962
Description: The converse of a transitive relation is a transitive relation. (Contributed by Richard Penner, 25-Dec-2019.)
Assertion
Ref Expression
cnvtrrel  |-  ( ( S  o.  S ) 
C_  S  <->  ( `' S  o.  `' S
)  C_  `' S
)

Proof of Theorem cnvtrrel
StepHypRef Expression
1 cnvss 5294 . . 3  |-  ( ( S  o.  S ) 
C_  S  ->  `' ( S  o.  S
)  C_  `' S
)
2 cnvss 5294 . . . 4  |-  ( `' ( S  o.  S
)  C_  `' S  ->  `' `' ( S  o.  S )  C_  `' `' S )
3 cnvco 5308 . . . . . . . . 9  |-  `' ( S  o.  S )  =  ( `' S  o.  `' S )
43cnveqi 5297 . . . . . . . 8  |-  `' `' ( S  o.  S
)  =  `' ( `' S  o.  `' S )
5 cnvco 5308 . . . . . . . 8  |-  `' ( `' S  o.  `' S )  =  ( `' `' S  o.  `' `' S )
6 cocnvcnv1 5646 . . . . . . . . 9  |-  ( `' `' S  o.  `' `' S )  =  ( S  o.  `' `' S )
7 cocnvcnv2 5647 . . . . . . . . 9  |-  ( S  o.  `' `' S
)  =  ( S  o.  S )
86, 7eqtri 2644 . . . . . . . 8  |-  ( `' `' S  o.  `' `' S )  =  ( S  o.  S )
94, 5, 83eqtri 2648 . . . . . . 7  |-  `' `' ( S  o.  S
)  =  ( S  o.  S )
109sseq1i 3629 . . . . . 6  |-  ( `' `' ( S  o.  S )  C_  `' `' S  <->  ( S  o.  S )  C_  `' `' S )
1110biimpi 206 . . . . 5  |-  ( `' `' ( S  o.  S )  C_  `' `' S  ->  ( S  o.  S )  C_  `' `' S )
12 cnvcnvss 5589 . . . . 5  |-  `' `' S  C_  S
1311, 12syl6ss 3615 . . . 4  |-  ( `' `' ( S  o.  S )  C_  `' `' S  ->  ( S  o.  S )  C_  S )
142, 13syl 17 . . 3  |-  ( `' ( S  o.  S
)  C_  `' S  ->  ( S  o.  S
)  C_  S )
151, 14impbii 199 . 2  |-  ( ( S  o.  S ) 
C_  S  <->  `' ( S  o.  S )  C_  `' S )
163sseq1i 3629 . 2  |-  ( `' ( S  o.  S
)  C_  `' S  <->  ( `' S  o.  `' S )  C_  `' S )
1715, 16bitri 264 1  |-  ( ( S  o.  S ) 
C_  S  <->  ( `' S  o.  `' S
)  C_  `' S
)
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    C_ wss 3574   `'ccnv 5113    o. ccom 5118
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator