| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > coi2 | Structured version Visualization version Unicode version | ||
| Description: Composition with the identity relation. Part of Theorem 3.7(i) of [Monk1] p. 36. (Contributed by NM, 22-Apr-2004.) |
| Ref | Expression |
|---|---|
| coi2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfrel2 5583 |
. 2
| |
| 2 | cnvco 5308 |
. . . 4
| |
| 3 | relcnv 5503 |
. . . . . 6
| |
| 4 | coi1 5651 |
. . . . . 6
| |
| 5 | 3, 4 | ax-mp 5 |
. . . . 5
|
| 6 | 5 | cnveqi 5297 |
. . . 4
|
| 7 | 2, 6 | eqtr3i 2646 |
. . 3
|
| 8 | cnvi 5537 |
. . . 4
| |
| 9 | coeq2 5280 |
. . . . 5
| |
| 10 | coeq1 5279 |
. . . . 5
| |
| 11 | 9, 10 | sylan9eq 2676 |
. . . 4
|
| 12 | 8, 11 | mpan2 707 |
. . 3
|
| 13 | id 22 |
. . 3
| |
| 14 | 7, 12, 13 | 3eqtr3a 2680 |
. 2
|
| 15 | 1, 14 | sylbi 207 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-br 4654 df-opab 4713 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 |
| This theorem is referenced by: relcoi2 5663 funi 5920 fcoi2 6079 |
| Copyright terms: Public domain | W3C validator |