MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coi2 Structured version   Visualization version   Unicode version

Theorem coi2 5652
Description: Composition with the identity relation. Part of Theorem 3.7(i) of [Monk1] p. 36. (Contributed by NM, 22-Apr-2004.)
Assertion
Ref Expression
coi2  |-  ( Rel 
A  ->  (  _I  o.  A )  =  A )

Proof of Theorem coi2
StepHypRef Expression
1 dfrel2 5583 . 2  |-  ( Rel 
A  <->  `' `' A  =  A
)
2 cnvco 5308 . . . 4  |-  `' ( `' A  o.  _I  )  =  ( `'  _I  o.  `' `' A
)
3 relcnv 5503 . . . . . 6  |-  Rel  `' A
4 coi1 5651 . . . . . 6  |-  ( Rel  `' A  ->  ( `' A  o.  _I  )  =  `' A )
53, 4ax-mp 5 . . . . 5  |-  ( `' A  o.  _I  )  =  `' A
65cnveqi 5297 . . . 4  |-  `' ( `' A  o.  _I  )  =  `' `' A
72, 6eqtr3i 2646 . . 3  |-  ( `'  _I  o.  `' `' A )  =  `' `' A
8 cnvi 5537 . . . 4  |-  `'  _I  =  _I
9 coeq2 5280 . . . . 5  |-  ( `' `' A  =  A  ->  ( `'  _I  o.  `' `' A )  =  ( `'  _I  o.  A ) )
10 coeq1 5279 . . . . 5  |-  ( `'  _I  =  _I  ->  ( `'  _I  o.  A )  =  (  _I  o.  A ) )
119, 10sylan9eq 2676 . . . 4  |-  ( ( `' `' A  =  A  /\  `'  _I  =  _I  )  ->  ( `'  _I  o.  `' `' A )  =  (  _I  o.  A ) )
128, 11mpan2 707 . . 3  |-  ( `' `' A  =  A  ->  ( `'  _I  o.  `' `' A )  =  (  _I  o.  A ) )
13 id 22 . . 3  |-  ( `' `' A  =  A  ->  `' `' A  =  A
)
147, 12, 133eqtr3a 2680 . 2  |-  ( `' `' A  =  A  ->  (  _I  o.  A
)  =  A )
151, 14sylbi 207 1  |-  ( Rel 
A  ->  (  _I  o.  A )  =  A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    _I cid 5023   `'ccnv 5113    o. ccom 5118   Rel wrel 5119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123
This theorem is referenced by:  relcoi2  5663  funi  5920  fcoi2  6079
  Copyright terms: Public domain W3C validator