MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  comfval Structured version   Visualization version   Unicode version

Theorem comfval 16360
Description: Value of the functionalized composition operation. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
comfffval.o  |-  O  =  (compf `  C )
comfffval.b  |-  B  =  ( Base `  C
)
comfffval.h  |-  H  =  ( Hom  `  C
)
comfffval.x  |-  .x.  =  (comp `  C )
comffval.x  |-  ( ph  ->  X  e.  B )
comffval.y  |-  ( ph  ->  Y  e.  B )
comffval.z  |-  ( ph  ->  Z  e.  B )
comfval.f  |-  ( ph  ->  F  e.  ( X H Y ) )
comfval.g  |-  ( ph  ->  G  e.  ( Y H Z ) )
Assertion
Ref Expression
comfval  |-  ( ph  ->  ( G ( <. X ,  Y >. O Z ) F )  =  ( G (
<. X ,  Y >.  .x. 
Z ) F ) )

Proof of Theorem comfval
Dummy variables  f 
g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 comfffval.o . . 3  |-  O  =  (compf `  C )
2 comfffval.b . . 3  |-  B  =  ( Base `  C
)
3 comfffval.h . . 3  |-  H  =  ( Hom  `  C
)
4 comfffval.x . . 3  |-  .x.  =  (comp `  C )
5 comffval.x . . 3  |-  ( ph  ->  X  e.  B )
6 comffval.y . . 3  |-  ( ph  ->  Y  e.  B )
7 comffval.z . . 3  |-  ( ph  ->  Z  e.  B )
81, 2, 3, 4, 5, 6, 7comffval 16359 . 2  |-  ( ph  ->  ( <. X ,  Y >. O Z )  =  ( g  e.  ( Y H Z ) ,  f  e.  ( X H Y ) 
|->  ( g ( <. X ,  Y >.  .x. 
Z ) f ) ) )
9 oveq12 6659 . . 3  |-  ( ( g  =  G  /\  f  =  F )  ->  ( g ( <. X ,  Y >.  .x. 
Z ) f )  =  ( G (
<. X ,  Y >.  .x. 
Z ) F ) )
109adantl 482 . 2  |-  ( (
ph  /\  ( g  =  G  /\  f  =  F ) )  -> 
( g ( <. X ,  Y >.  .x. 
Z ) f )  =  ( G (
<. X ,  Y >.  .x. 
Z ) F ) )
11 comfval.g . 2  |-  ( ph  ->  G  e.  ( Y H Z ) )
12 comfval.f . 2  |-  ( ph  ->  F  e.  ( X H Y ) )
13 ovexd 6680 . 2  |-  ( ph  ->  ( G ( <. X ,  Y >.  .x. 
Z ) F )  e.  _V )
148, 10, 11, 12, 13ovmpt2d 6788 1  |-  ( ph  ->  ( G ( <. X ,  Y >. O Z ) F )  =  ( G (
<. X ,  Y >.  .x. 
Z ) F ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200   <.cop 4183   ` cfv 5888  (class class class)co 6650   Basecbs 15857   Hom chom 15952  compcco 15953  compfccomf 16328
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-comf 16332
This theorem is referenced by:  comfval2  16363  comfeqval  16368
  Copyright terms: Public domain W3C validator