MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  comffval Structured version   Visualization version   Unicode version

Theorem comffval 16359
Description: Value of the functionalized composition operation. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
comfffval.o  |-  O  =  (compf `  C )
comfffval.b  |-  B  =  ( Base `  C
)
comfffval.h  |-  H  =  ( Hom  `  C
)
comfffval.x  |-  .x.  =  (comp `  C )
comffval.x  |-  ( ph  ->  X  e.  B )
comffval.y  |-  ( ph  ->  Y  e.  B )
comffval.z  |-  ( ph  ->  Z  e.  B )
Assertion
Ref Expression
comffval  |-  ( ph  ->  ( <. X ,  Y >. O Z )  =  ( g  e.  ( Y H Z ) ,  f  e.  ( X H Y ) 
|->  ( g ( <. X ,  Y >.  .x. 
Z ) f ) ) )
Distinct variable groups:    f, g, C    ph, f, g    .x. , f,
g    f, X, g    f, Y, g    f, Z, g   
f, H, g
Allowed substitution hints:    B( f, g)    O( f, g)

Proof of Theorem comffval
Dummy variables  x  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 comfffval.o . . . 4  |-  O  =  (compf `  C )
2 comfffval.b . . . 4  |-  B  =  ( Base `  C
)
3 comfffval.h . . . 4  |-  H  =  ( Hom  `  C
)
4 comfffval.x . . . 4  |-  .x.  =  (comp `  C )
51, 2, 3, 4comfffval 16358 . . 3  |-  O  =  ( x  e.  ( B  X.  B ) ,  z  e.  B  |->  ( g  e.  ( ( 2nd `  x
) H z ) ,  f  e.  ( H `  x ) 
|->  ( g ( x 
.x.  z ) f ) ) )
65a1i 11 . 2  |-  ( ph  ->  O  =  ( x  e.  ( B  X.  B ) ,  z  e.  B  |->  ( g  e.  ( ( 2nd `  x ) H z ) ,  f  e.  ( H `  x
)  |->  ( g ( x  .x.  z ) f ) ) ) )
7 simprl 794 . . . . . 6  |-  ( (
ph  /\  ( x  =  <. X ,  Y >.  /\  z  =  Z ) )  ->  x  =  <. X ,  Y >. )
87fveq2d 6195 . . . . 5  |-  ( (
ph  /\  ( x  =  <. X ,  Y >.  /\  z  =  Z ) )  ->  ( 2nd `  x )  =  ( 2nd `  <. X ,  Y >. )
)
9 comffval.x . . . . . . 7  |-  ( ph  ->  X  e.  B )
10 comffval.y . . . . . . 7  |-  ( ph  ->  Y  e.  B )
11 op2ndg 7181 . . . . . . 7  |-  ( ( X  e.  B  /\  Y  e.  B )  ->  ( 2nd `  <. X ,  Y >. )  =  Y )
129, 10, 11syl2anc 693 . . . . . 6  |-  ( ph  ->  ( 2nd `  <. X ,  Y >. )  =  Y )
1312adantr 481 . . . . 5  |-  ( (
ph  /\  ( x  =  <. X ,  Y >.  /\  z  =  Z ) )  ->  ( 2nd `  <. X ,  Y >. )  =  Y )
148, 13eqtrd 2656 . . . 4  |-  ( (
ph  /\  ( x  =  <. X ,  Y >.  /\  z  =  Z ) )  ->  ( 2nd `  x )  =  Y )
15 simprr 796 . . . 4  |-  ( (
ph  /\  ( x  =  <. X ,  Y >.  /\  z  =  Z ) )  ->  z  =  Z )
1614, 15oveq12d 6668 . . 3  |-  ( (
ph  /\  ( x  =  <. X ,  Y >.  /\  z  =  Z ) )  ->  (
( 2nd `  x
) H z )  =  ( Y H Z ) )
177fveq2d 6195 . . . 4  |-  ( (
ph  /\  ( x  =  <. X ,  Y >.  /\  z  =  Z ) )  ->  ( H `  x )  =  ( H `  <. X ,  Y >. ) )
18 df-ov 6653 . . . 4  |-  ( X H Y )  =  ( H `  <. X ,  Y >. )
1917, 18syl6eqr 2674 . . 3  |-  ( (
ph  /\  ( x  =  <. X ,  Y >.  /\  z  =  Z ) )  ->  ( H `  x )  =  ( X H Y ) )
207, 15oveq12d 6668 . . . 4  |-  ( (
ph  /\  ( x  =  <. X ,  Y >.  /\  z  =  Z ) )  ->  (
x  .x.  z )  =  ( <. X ,  Y >.  .x.  Z )
)
2120oveqd 6667 . . 3  |-  ( (
ph  /\  ( x  =  <. X ,  Y >.  /\  z  =  Z ) )  ->  (
g ( x  .x.  z ) f )  =  ( g (
<. X ,  Y >.  .x. 
Z ) f ) )
2216, 19, 21mpt2eq123dv 6717 . 2  |-  ( (
ph  /\  ( x  =  <. X ,  Y >.  /\  z  =  Z ) )  ->  (
g  e.  ( ( 2nd `  x ) H z ) ,  f  e.  ( H `
 x )  |->  ( g ( x  .x.  z ) f ) )  =  ( g  e.  ( Y H Z ) ,  f  e.  ( X H Y )  |->  ( g ( <. X ,  Y >.  .x.  Z ) f ) ) )
23 opelxpi 5148 . . 3  |-  ( ( X  e.  B  /\  Y  e.  B )  -> 
<. X ,  Y >.  e.  ( B  X.  B
) )
249, 10, 23syl2anc 693 . 2  |-  ( ph  -> 
<. X ,  Y >.  e.  ( B  X.  B
) )
25 comffval.z . 2  |-  ( ph  ->  Z  e.  B )
26 ovex 6678 . . . 4  |-  ( Y H Z )  e. 
_V
27 ovex 6678 . . . 4  |-  ( X H Y )  e. 
_V
2826, 27mpt2ex 7247 . . 3  |-  ( g  e.  ( Y H Z ) ,  f  e.  ( X H Y )  |->  ( g ( <. X ,  Y >.  .x.  Z ) f ) )  e.  _V
2928a1i 11 . 2  |-  ( ph  ->  ( g  e.  ( Y H Z ) ,  f  e.  ( X H Y ) 
|->  ( g ( <. X ,  Y >.  .x. 
Z ) f ) )  e.  _V )
306, 22, 24, 25, 29ovmpt2d 6788 1  |-  ( ph  ->  ( <. X ,  Y >. O Z )  =  ( g  e.  ( Y H Z ) ,  f  e.  ( X H Y ) 
|->  ( g ( <. X ,  Y >.  .x. 
Z ) f ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200   <.cop 4183    X. cxp 5112   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   2ndc2nd 7167   Basecbs 15857   Hom chom 15952  compcco 15953  compfccomf 16328
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-comf 16332
This theorem is referenced by:  comfval  16360  comffval2  16362  comffn  16365
  Copyright terms: Public domain W3C validator