Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnvtrcl0 Structured version   Visualization version   Unicode version

Theorem cnvtrcl0 37933
Description: The converse of the transitive closure is equal to the closure of the converse. (Contributed by RP, 18-Oct-2020.)
Assertion
Ref Expression
cnvtrcl0  |-  ( X  e.  V  ->  `' |^| { x  |  ( X  C_  x  /\  ( x  o.  x
)  C_  x ) }  =  |^| { y  |  ( `' X  C_  y  /\  ( y  o.  y )  C_  y ) } )
Distinct variable groups:    x, y, V    x, X, y

Proof of Theorem cnvtrcl0
StepHypRef Expression
1 cnvco 5308 . . . . . 6  |-  `' ( y  o.  y )  =  ( `' y  o.  `' y )
2 cnvss 5294 . . . . . 6  |-  ( ( y  o.  y ) 
C_  y  ->  `' ( y  o.  y
)  C_  `' y
)
31, 2syl5eqssr 3650 . . . . 5  |-  ( ( y  o.  y ) 
C_  y  ->  ( `' y  o.  `' y )  C_  `' y )
4 coundir 5637 . . . . . . 7  |-  ( ( `' y  u.  ( X  \  `' `' X
) )  o.  ( `' y  u.  ( X  \  `' `' X
) ) )  =  ( ( `' y  o.  ( `' y  u.  ( X  \  `' `' X ) ) )  u.  ( ( X 
\  `' `' X
)  o.  ( `' y  u.  ( X 
\  `' `' X
) ) ) )
5 coundi 5636 . . . . . . . . 9  |-  ( `' y  o.  ( `' y  u.  ( X 
\  `' `' X
) ) )  =  ( ( `' y  o.  `' y )  u.  ( `' y  o.  ( X  \  `' `' X ) ) )
6 ssid 3624 . . . . . . . . . 10  |-  ( `' y  o.  `' y )  C_  ( `' y  o.  `' y
)
7 cononrel2 37901 . . . . . . . . . . 11  |-  ( `' y  o.  ( X 
\  `' `' X
) )  =  (/)
8 0ss 3972 . . . . . . . . . . 11  |-  (/)  C_  ( `' y  o.  `' y )
97, 8eqsstri 3635 . . . . . . . . . 10  |-  ( `' y  o.  ( X 
\  `' `' X
) )  C_  ( `' y  o.  `' y )
106, 9unssi 3788 . . . . . . . . 9  |-  ( ( `' y  o.  `' y )  u.  ( `' y  o.  ( X  \  `' `' X
) ) )  C_  ( `' y  o.  `' y )
115, 10eqsstri 3635 . . . . . . . 8  |-  ( `' y  o.  ( `' y  u.  ( X 
\  `' `' X
) ) )  C_  ( `' y  o.  `' y )
12 cononrel1 37900 . . . . . . . . 9  |-  ( ( X  \  `' `' X )  o.  ( `' y  u.  ( X  \  `' `' X
) ) )  =  (/)
1312, 8eqsstri 3635 . . . . . . . 8  |-  ( ( X  \  `' `' X )  o.  ( `' y  u.  ( X  \  `' `' X
) ) )  C_  ( `' y  o.  `' y )
1411, 13unssi 3788 . . . . . . 7  |-  ( ( `' y  o.  ( `' y  u.  ( X  \  `' `' X
) ) )  u.  ( ( X  \  `' `' X )  o.  ( `' y  u.  ( X  \  `' `' X
) ) ) ) 
C_  ( `' y  o.  `' y )
154, 14eqsstri 3635 . . . . . 6  |-  ( ( `' y  u.  ( X  \  `' `' X
) )  o.  ( `' y  u.  ( X  \  `' `' X
) ) )  C_  ( `' y  o.  `' y )
16 id 22 . . . . . 6  |-  ( ( `' y  o.  `' y )  C_  `' y  ->  ( `' y  o.  `' y ) 
C_  `' y )
1715, 16syl5ss 3614 . . . . 5  |-  ( ( `' y  o.  `' y )  C_  `' y  ->  ( ( `' y  u.  ( X 
\  `' `' X
) )  o.  ( `' y  u.  ( X  \  `' `' X
) ) )  C_  `' y )
18 ssun3 3778 . . . . 5  |-  ( ( ( `' y  u.  ( X  \  `' `' X ) )  o.  ( `' y  u.  ( X  \  `' `' X ) ) ) 
C_  `' y  -> 
( ( `' y  u.  ( X  \  `' `' X ) )  o.  ( `' y  u.  ( X  \  `' `' X ) ) ) 
C_  ( `' y  u.  ( X  \  `' `' X ) ) )
193, 17, 183syl 18 . . . 4  |-  ( ( y  o.  y ) 
C_  y  ->  (
( `' y  u.  ( X  \  `' `' X ) )  o.  ( `' y  u.  ( X  \  `' `' X ) ) ) 
C_  ( `' y  u.  ( X  \  `' `' X ) ) )
20 id 22 . . . . . 6  |-  ( x  =  ( `' y  u.  ( X  \  `' `' X ) )  ->  x  =  ( `' y  u.  ( X  \  `' `' X ) ) )
2120, 20coeq12d 5286 . . . . 5  |-  ( x  =  ( `' y  u.  ( X  \  `' `' X ) )  -> 
( x  o.  x
)  =  ( ( `' y  u.  ( X  \  `' `' X
) )  o.  ( `' y  u.  ( X  \  `' `' X
) ) ) )
2221, 20sseq12d 3634 . . . 4  |-  ( x  =  ( `' y  u.  ( X  \  `' `' X ) )  -> 
( ( x  o.  x )  C_  x  <->  ( ( `' y  u.  ( X  \  `' `' X ) )  o.  ( `' y  u.  ( X  \  `' `' X ) ) ) 
C_  ( `' y  u.  ( X  \  `' `' X ) ) ) )
2319, 22syl5ibr 236 . . 3  |-  ( x  =  ( `' y  u.  ( X  \  `' `' X ) )  -> 
( ( y  o.  y )  C_  y  ->  ( x  o.  x
)  C_  x )
)
2423adantl 482 . 2  |-  ( ( X  e.  V  /\  x  =  ( `' y  u.  ( X  \  `' `' X ) ) )  ->  ( ( y  o.  y )  C_  y  ->  ( x  o.  x )  C_  x
) )
25 cnvco 5308 . . . . 5  |-  `' ( x  o.  x )  =  ( `' x  o.  `' x )
26 cnvss 5294 . . . . 5  |-  ( ( x  o.  x ) 
C_  x  ->  `' ( x  o.  x
)  C_  `' x
)
2725, 26syl5eqssr 3650 . . . 4  |-  ( ( x  o.  x ) 
C_  x  ->  ( `' x  o.  `' x )  C_  `' x )
28 id 22 . . . . . 6  |-  ( y  =  `' x  -> 
y  =  `' x
)
2928, 28coeq12d 5286 . . . . 5  |-  ( y  =  `' x  -> 
( y  o.  y
)  =  ( `' x  o.  `' x
) )
3029, 28sseq12d 3634 . . . 4  |-  ( y  =  `' x  -> 
( ( y  o.  y )  C_  y  <->  ( `' x  o.  `' x )  C_  `' x ) )
3127, 30syl5ibr 236 . . 3  |-  ( y  =  `' x  -> 
( ( x  o.  x )  C_  x  ->  ( y  o.  y
)  C_  y )
)
3231adantl 482 . 2  |-  ( ( X  e.  V  /\  y  =  `' x
)  ->  ( (
x  o.  x ) 
C_  x  ->  (
y  o.  y ) 
C_  y ) )
33 id 22 . . . 4  |-  ( x  =  ( X  u.  ( dom  X  X.  ran  X ) )  ->  x  =  ( X  u.  ( dom  X  X.  ran  X ) ) )
3433, 33coeq12d 5286 . . 3  |-  ( x  =  ( X  u.  ( dom  X  X.  ran  X ) )  ->  (
x  o.  x )  =  ( ( X  u.  ( dom  X  X.  ran  X ) )  o.  ( X  u.  ( dom  X  X.  ran  X ) ) ) )
3534, 33sseq12d 3634 . 2  |-  ( x  =  ( X  u.  ( dom  X  X.  ran  X ) )  ->  (
( x  o.  x
)  C_  x  <->  ( ( X  u.  ( dom  X  X.  ran  X ) )  o.  ( X  u.  ( dom  X  X.  ran  X ) ) )  C_  ( X  u.  ( dom  X  X.  ran  X ) ) ) )
36 ssun1 3776 . . 3  |-  X  C_  ( X  u.  ( dom  X  X.  ran  X
) )
3736a1i 11 . 2  |-  ( X  e.  V  ->  X  C_  ( X  u.  ( dom  X  X.  ran  X
) ) )
38 trclexlem 13733 . 2  |-  ( X  e.  V  ->  ( X  u.  ( dom  X  X.  ran  X ) )  e.  _V )
39 coundir 5637 . . . . 5  |-  ( ( X  u.  ( dom 
X  X.  ran  X
) )  o.  ( X  u.  ( dom  X  X.  ran  X ) ) )  =  ( ( X  o.  ( X  u.  ( dom  X  X.  ran  X ) ) )  u.  (
( dom  X  X.  ran  X )  o.  ( X  u.  ( dom  X  X.  ran  X ) ) ) )
40 coundi 5636 . . . . . . 7  |-  ( X  o.  ( X  u.  ( dom  X  X.  ran  X ) ) )  =  ( ( X  o.  X )  u.  ( X  o.  ( dom  X  X.  ran  X ) ) )
41 cossxp 5658 . . . . . . . 8  |-  ( X  o.  X )  C_  ( dom  X  X.  ran  X )
42 cossxp 5658 . . . . . . . . 9  |-  ( X  o.  ( dom  X  X.  ran  X ) ) 
C_  ( dom  ( dom  X  X.  ran  X
)  X.  ran  X
)
43 dmxpss 5565 . . . . . . . . . 10  |-  dom  ( dom  X  X.  ran  X
)  C_  dom  X
44 xpss1 5228 . . . . . . . . . 10  |-  ( dom  ( dom  X  X.  ran  X )  C_  dom  X  ->  ( dom  ( dom  X  X.  ran  X
)  X.  ran  X
)  C_  ( dom  X  X.  ran  X ) )
4543, 44ax-mp 5 . . . . . . . . 9  |-  ( dom  ( dom  X  X.  ran  X )  X.  ran  X )  C_  ( dom  X  X.  ran  X )
4642, 45sstri 3612 . . . . . . . 8  |-  ( X  o.  ( dom  X  X.  ran  X ) ) 
C_  ( dom  X  X.  ran  X )
4741, 46unssi 3788 . . . . . . 7  |-  ( ( X  o.  X )  u.  ( X  o.  ( dom  X  X.  ran  X ) ) )  C_  ( dom  X  X.  ran  X )
4840, 47eqsstri 3635 . . . . . 6  |-  ( X  o.  ( X  u.  ( dom  X  X.  ran  X ) ) )  C_  ( dom  X  X.  ran  X )
49 coundi 5636 . . . . . . 7  |-  ( ( dom  X  X.  ran  X )  o.  ( X  u.  ( dom  X  X.  ran  X ) ) )  =  ( ( ( dom  X  X.  ran  X )  o.  X
)  u.  ( ( dom  X  X.  ran  X )  o.  ( dom 
X  X.  ran  X
) ) )
50 cossxp 5658 . . . . . . . . 9  |-  ( ( dom  X  X.  ran  X )  o.  X ) 
C_  ( dom  X  X.  ran  ( dom  X  X.  ran  X ) )
51 rnxpss 5566 . . . . . . . . . 10  |-  ran  ( dom  X  X.  ran  X
)  C_  ran  X
52 xpss2 5229 . . . . . . . . . 10  |-  ( ran  ( dom  X  X.  ran  X )  C_  ran  X  ->  ( dom  X  X.  ran  ( dom  X  X.  ran  X ) ) 
C_  ( dom  X  X.  ran  X ) )
5351, 52ax-mp 5 . . . . . . . . 9  |-  ( dom 
X  X.  ran  ( dom  X  X.  ran  X
) )  C_  ( dom  X  X.  ran  X
)
5450, 53sstri 3612 . . . . . . . 8  |-  ( ( dom  X  X.  ran  X )  o.  X ) 
C_  ( dom  X  X.  ran  X )
55 xptrrel 13719 . . . . . . . 8  |-  ( ( dom  X  X.  ran  X )  o.  ( dom 
X  X.  ran  X
) )  C_  ( dom  X  X.  ran  X
)
5654, 55unssi 3788 . . . . . . 7  |-  ( ( ( dom  X  X.  ran  X )  o.  X
)  u.  ( ( dom  X  X.  ran  X )  o.  ( dom 
X  X.  ran  X
) ) )  C_  ( dom  X  X.  ran  X )
5749, 56eqsstri 3635 . . . . . 6  |-  ( ( dom  X  X.  ran  X )  o.  ( X  u.  ( dom  X  X.  ran  X ) ) )  C_  ( dom  X  X.  ran  X )
5848, 57unssi 3788 . . . . 5  |-  ( ( X  o.  ( X  u.  ( dom  X  X.  ran  X ) ) )  u.  ( ( dom  X  X.  ran  X )  o.  ( X  u.  ( dom  X  X.  ran  X ) ) ) )  C_  ( dom  X  X.  ran  X
)
5939, 58eqsstri 3635 . . . 4  |-  ( ( X  u.  ( dom 
X  X.  ran  X
) )  o.  ( X  u.  ( dom  X  X.  ran  X ) ) )  C_  ( dom  X  X.  ran  X
)
60 ssun2 3777 . . . 4  |-  ( dom 
X  X.  ran  X
)  C_  ( X  u.  ( dom  X  X.  ran  X ) )
6159, 60sstri 3612 . . 3  |-  ( ( X  u.  ( dom 
X  X.  ran  X
) )  o.  ( X  u.  ( dom  X  X.  ran  X ) ) )  C_  ( X  u.  ( dom  X  X.  ran  X ) )
6261a1i 11 . 2  |-  ( X  e.  V  ->  (
( X  u.  ( dom  X  X.  ran  X
) )  o.  ( X  u.  ( dom  X  X.  ran  X ) ) )  C_  ( X  u.  ( dom  X  X.  ran  X ) ) )
6324, 32, 35, 37, 38, 62clcnvlem 37930 1  |-  ( X  e.  V  ->  `' |^| { x  |  ( X  C_  x  /\  ( x  o.  x
)  C_  x ) }  =  |^| { y  |  ( `' X  C_  y  /\  ( y  o.  y )  C_  y ) } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   {cab 2608    \ cdif 3571    u. cun 3572    C_ wss 3574   (/)c0 3915   |^|cint 4475    X. cxp 5112   `'ccnv 5113   dom cdm 5114   ran crn 5115    o. ccom 5118
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-iota 5851  df-fun 5890  df-fv 5896  df-1st 7168  df-2nd 7169
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator