| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cnvtrcl0 | Structured version Visualization version Unicode version | ||
| Description: The converse of the transitive closure is equal to the closure of the converse. (Contributed by RP, 18-Oct-2020.) |
| Ref | Expression |
|---|---|
| cnvtrcl0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvco 5308 |
. . . . . 6
| |
| 2 | cnvss 5294 |
. . . . . 6
| |
| 3 | 1, 2 | syl5eqssr 3650 |
. . . . 5
|
| 4 | coundir 5637 |
. . . . . . 7
| |
| 5 | coundi 5636 |
. . . . . . . . 9
| |
| 6 | ssid 3624 |
. . . . . . . . . 10
| |
| 7 | cononrel2 37901 |
. . . . . . . . . . 11
| |
| 8 | 0ss 3972 |
. . . . . . . . . . 11
| |
| 9 | 7, 8 | eqsstri 3635 |
. . . . . . . . . 10
|
| 10 | 6, 9 | unssi 3788 |
. . . . . . . . 9
|
| 11 | 5, 10 | eqsstri 3635 |
. . . . . . . 8
|
| 12 | cononrel1 37900 |
. . . . . . . . 9
| |
| 13 | 12, 8 | eqsstri 3635 |
. . . . . . . 8
|
| 14 | 11, 13 | unssi 3788 |
. . . . . . 7
|
| 15 | 4, 14 | eqsstri 3635 |
. . . . . 6
|
| 16 | id 22 |
. . . . . 6
| |
| 17 | 15, 16 | syl5ss 3614 |
. . . . 5
|
| 18 | ssun3 3778 |
. . . . 5
| |
| 19 | 3, 17, 18 | 3syl 18 |
. . . 4
|
| 20 | id 22 |
. . . . . 6
| |
| 21 | 20, 20 | coeq12d 5286 |
. . . . 5
|
| 22 | 21, 20 | sseq12d 3634 |
. . . 4
|
| 23 | 19, 22 | syl5ibr 236 |
. . 3
|
| 24 | 23 | adantl 482 |
. 2
|
| 25 | cnvco 5308 |
. . . . 5
| |
| 26 | cnvss 5294 |
. . . . 5
| |
| 27 | 25, 26 | syl5eqssr 3650 |
. . . 4
|
| 28 | id 22 |
. . . . . 6
| |
| 29 | 28, 28 | coeq12d 5286 |
. . . . 5
|
| 30 | 29, 28 | sseq12d 3634 |
. . . 4
|
| 31 | 27, 30 | syl5ibr 236 |
. . 3
|
| 32 | 31 | adantl 482 |
. 2
|
| 33 | id 22 |
. . . 4
| |
| 34 | 33, 33 | coeq12d 5286 |
. . 3
|
| 35 | 34, 33 | sseq12d 3634 |
. 2
|
| 36 | ssun1 3776 |
. . 3
| |
| 37 | 36 | a1i 11 |
. 2
|
| 38 | trclexlem 13733 |
. 2
| |
| 39 | coundir 5637 |
. . . . 5
| |
| 40 | coundi 5636 |
. . . . . . 7
| |
| 41 | cossxp 5658 |
. . . . . . . 8
| |
| 42 | cossxp 5658 |
. . . . . . . . 9
| |
| 43 | dmxpss 5565 |
. . . . . . . . . 10
| |
| 44 | xpss1 5228 |
. . . . . . . . . 10
| |
| 45 | 43, 44 | ax-mp 5 |
. . . . . . . . 9
|
| 46 | 42, 45 | sstri 3612 |
. . . . . . . 8
|
| 47 | 41, 46 | unssi 3788 |
. . . . . . 7
|
| 48 | 40, 47 | eqsstri 3635 |
. . . . . 6
|
| 49 | coundi 5636 |
. . . . . . 7
| |
| 50 | cossxp 5658 |
. . . . . . . . 9
| |
| 51 | rnxpss 5566 |
. . . . . . . . . 10
| |
| 52 | xpss2 5229 |
. . . . . . . . . 10
| |
| 53 | 51, 52 | ax-mp 5 |
. . . . . . . . 9
|
| 54 | 50, 53 | sstri 3612 |
. . . . . . . 8
|
| 55 | xptrrel 13719 |
. . . . . . . 8
| |
| 56 | 54, 55 | unssi 3788 |
. . . . . . 7
|
| 57 | 49, 56 | eqsstri 3635 |
. . . . . 6
|
| 58 | 48, 57 | unssi 3788 |
. . . . 5
|
| 59 | 39, 58 | eqsstri 3635 |
. . . 4
|
| 60 | ssun2 3777 |
. . . 4
| |
| 61 | 59, 60 | sstri 3612 |
. . 3
|
| 62 | 61 | a1i 11 |
. 2
|
| 63 | 24, 32, 35, 37, 38, 62 | clcnvlem 37930 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-int 4476 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-iota 5851 df-fun 5890 df-fv 5896 df-1st 7168 df-2nd 7169 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |