| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > copsex2g | Structured version Visualization version Unicode version | ||
| Description: Implicit substitution inference for ordered pairs. (Contributed by NM, 28-May-1995.) |
| Ref | Expression |
|---|---|
| copsex2g.1 |
|
| Ref | Expression |
|---|---|
| copsex2g |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elisset 3215 |
. 2
| |
| 2 | elisset 3215 |
. 2
| |
| 3 | eeanv 2182 |
. . 3
| |
| 4 | nfe1 2027 |
. . . . 5
| |
| 5 | nfv 1843 |
. . . . 5
| |
| 6 | 4, 5 | nfbi 1833 |
. . . 4
|
| 7 | nfe1 2027 |
. . . . . . 7
| |
| 8 | 7 | nfex 2154 |
. . . . . 6
|
| 9 | nfv 1843 |
. . . . . 6
| |
| 10 | 8, 9 | nfbi 1833 |
. . . . 5
|
| 11 | opeq12 4404 |
. . . . . . 7
| |
| 12 | copsexg 4956 |
. . . . . . . 8
| |
| 13 | 12 | eqcoms 2630 |
. . . . . . 7
|
| 14 | 11, 13 | syl 17 |
. . . . . 6
|
| 15 | copsex2g.1 |
. . . . . 6
| |
| 16 | 14, 15 | bitr3d 270 |
. . . . 5
|
| 17 | 10, 16 | exlimi 2086 |
. . . 4
|
| 18 | 6, 17 | exlimi 2086 |
. . 3
|
| 19 | 3, 18 | sylbir 225 |
. 2
|
| 20 | 1, 2, 19 | syl2an 494 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 |
| This theorem is referenced by: opelopabga 4988 ov6g 6798 ltresr 9961 |
| Copyright terms: Public domain | W3C validator |