| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ov6g | Structured version Visualization version Unicode version | ||
| Description: The value of an operation class abstraction. Special case. (Contributed by NM, 13-Nov-2006.) |
| Ref | Expression |
|---|---|
| ov6g.1 |
|
| ov6g.2 |
|
| Ref | Expression |
|---|---|
| ov6g |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ov 6653 |
. 2
| |
| 2 | eqid 2622 |
. . . . . 6
| |
| 3 | biidd 252 |
. . . . . . 7
| |
| 4 | 3 | copsex2g 4958 |
. . . . . 6
|
| 5 | 2, 4 | mpbiri 248 |
. . . . 5
|
| 6 | 5 | 3adant3 1081 |
. . . 4
|
| 7 | 6 | adantr 481 |
. . 3
|
| 8 | eqeq1 2626 |
. . . . . . . 8
| |
| 9 | 8 | anbi1d 741 |
. . . . . . 7
|
| 10 | ov6g.1 |
. . . . . . . . . 10
| |
| 11 | 10 | eqeq2d 2632 |
. . . . . . . . 9
|
| 12 | 11 | eqcoms 2630 |
. . . . . . . 8
|
| 13 | 12 | pm5.32i 669 |
. . . . . . 7
|
| 14 | 9, 13 | syl6bb 276 |
. . . . . 6
|
| 15 | 14 | 2exbidv 1852 |
. . . . 5
|
| 16 | eqeq1 2626 |
. . . . . . 7
| |
| 17 | 16 | anbi2d 740 |
. . . . . 6
|
| 18 | 17 | 2exbidv 1852 |
. . . . 5
|
| 19 | moeq 3382 |
. . . . . . 7
| |
| 20 | 19 | mosubop 4973 |
. . . . . 6
|
| 21 | 20 | a1i 11 |
. . . . 5
|
| 22 | ov6g.2 |
. . . . . 6
| |
| 23 | dfoprab2 6701 |
. . . . . 6
| |
| 24 | eleq1 2689 |
. . . . . . . . . . . 12
| |
| 25 | 24 | anbi1d 741 |
. . . . . . . . . . 11
|
| 26 | 25 | pm5.32i 669 |
. . . . . . . . . 10
|
| 27 | an12 838 |
. . . . . . . . . 10
| |
| 28 | 26, 27 | bitr3i 266 |
. . . . . . . . 9
|
| 29 | 28 | 2exbii 1775 |
. . . . . . . 8
|
| 30 | 19.42vv 1920 |
. . . . . . . 8
| |
| 31 | 29, 30 | bitri 264 |
. . . . . . 7
|
| 32 | 31 | opabbii 4717 |
. . . . . 6
|
| 33 | 22, 23, 32 | 3eqtri 2648 |
. . . . 5
|
| 34 | 15, 18, 21, 33 | fvopab3ig 6278 |
. . . 4
|
| 35 | 34 | 3ad2antl3 1225 |
. . 3
|
| 36 | 7, 35 | mpd 15 |
. 2
|
| 37 | 1, 36 | syl5eq 2668 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-iota 5851 df-fun 5890 df-fv 5896 df-ov 6653 df-oprab 6654 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |