MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltresr Structured version   Visualization version   Unicode version

Theorem ltresr 9961
Description: Ordering of real subset of complex numbers in terms of signed reals. (Contributed by NM, 22-Feb-1996.) (New usage is discouraged.)
Assertion
Ref Expression
ltresr  |-  ( <. A ,  0R >.  <RR  <. B ,  0R >. 
<->  A  <R  B )

Proof of Theorem ltresr
Dummy variables  x  y  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltrelre 9955 . . . 4  |-  <RR  C_  ( RR  X.  RR )
21brel 5168 . . 3  |-  ( <. A ,  0R >.  <RR  <. B ,  0R >.  ->  ( <. A ,  0R >.  e.  RR  /\ 
<. B ,  0R >.  e.  RR ) )
3 opelreal 9951 . . . 4  |-  ( <. A ,  0R >.  e.  RR  <->  A  e.  R. )
4 opelreal 9951 . . . 4  |-  ( <. B ,  0R >.  e.  RR  <->  B  e.  R. )
53, 4anbi12i 733 . . 3  |-  ( (
<. A ,  0R >.  e.  RR  /\  <. B ,  0R >.  e.  RR )  <-> 
( A  e.  R.  /\  B  e.  R. )
)
62, 5sylib 208 . 2  |-  ( <. A ,  0R >.  <RR  <. B ,  0R >.  ->  ( A  e.  R.  /\  B  e. 
R. ) )
7 ltrelsr 9889 . . 3  |-  <R  C_  ( R.  X.  R. )
87brel 5168 . 2  |-  ( A 
<R  B  ->  ( A  e.  R.  /\  B  e.  R. ) )
9 opex 4932 . . . . . . 7  |-  <. A ,  0R >.  e.  _V
10 opex 4932 . . . . . . 7  |-  <. B ,  0R >.  e.  _V
11 eleq1 2689 . . . . . . . . 9  |-  ( x  =  <. A ,  0R >.  ->  ( x  e.  RR  <->  <. A ,  0R >.  e.  RR ) )
1211anbi1d 741 . . . . . . . 8  |-  ( x  =  <. A ,  0R >.  ->  ( ( x  e.  RR  /\  y  e.  RR )  <->  ( <. A ,  0R >.  e.  RR  /\  y  e.  RR ) ) )
13 eqeq1 2626 . . . . . . . . . . 11  |-  ( x  =  <. A ,  0R >.  ->  ( x  = 
<. z ,  0R >.  <->  <. A ,  0R >.  =  <. z ,  0R >. )
)
1413anbi1d 741 . . . . . . . . . 10  |-  ( x  =  <. A ,  0R >.  ->  ( ( x  =  <. z ,  0R >.  /\  y  =  <. w ,  0R >. )  <->  (
<. A ,  0R >.  = 
<. z ,  0R >.  /\  y  =  <. w ,  0R >. ) ) )
1514anbi1d 741 . . . . . . . . 9  |-  ( x  =  <. A ,  0R >.  ->  ( ( ( x  =  <. z ,  0R >.  /\  y  =  <. w ,  0R >. )  /\  z  <R  w )  <->  ( ( <. A ,  0R >.  = 
<. z ,  0R >.  /\  y  =  <. w ,  0R >. )  /\  z  <R  w ) ) )
16152exbidv 1852 . . . . . . . 8  |-  ( x  =  <. A ,  0R >.  ->  ( E. z E. w ( ( x  =  <. z ,  0R >.  /\  y  =  <. w ,  0R >. )  /\  z  <R  w )  <->  E. z E. w ( ( <. A ,  0R >.  =  <. z ,  0R >.  /\  y  =  <. w ,  0R >. )  /\  z  <R  w ) ) )
1712, 16anbi12d 747 . . . . . . 7  |-  ( x  =  <. A ,  0R >.  ->  ( ( ( x  e.  RR  /\  y  e.  RR )  /\  E. z E. w
( ( x  = 
<. z ,  0R >.  /\  y  =  <. w ,  0R >. )  /\  z  <R  w ) )  <->  ( ( <. A ,  0R >.  e.  RR  /\  y  e.  RR )  /\  E. z E. w ( (
<. A ,  0R >.  = 
<. z ,  0R >.  /\  y  =  <. w ,  0R >. )  /\  z  <R  w ) ) ) )
18 eleq1 2689 . . . . . . . . 9  |-  ( y  =  <. B ,  0R >.  ->  ( y  e.  RR  <->  <. B ,  0R >.  e.  RR ) )
1918anbi2d 740 . . . . . . . 8  |-  ( y  =  <. B ,  0R >.  ->  ( ( <. A ,  0R >.  e.  RR  /\  y  e.  RR )  <-> 
( <. A ,  0R >.  e.  RR  /\  <. B ,  0R >.  e.  RR ) ) )
20 eqeq1 2626 . . . . . . . . . . 11  |-  ( y  =  <. B ,  0R >.  ->  ( y  = 
<. w ,  0R >.  <->  <. B ,  0R >.  =  <. w ,  0R >. )
)
2120anbi2d 740 . . . . . . . . . 10  |-  ( y  =  <. B ,  0R >.  ->  ( ( <. A ,  0R >.  =  <. z ,  0R >.  /\  y  =  <. w ,  0R >. )  <->  ( <. A ,  0R >.  =  <. z ,  0R >.  /\  <. B ,  0R >.  =  <. w ,  0R >. ) ) )
2221anbi1d 741 . . . . . . . . 9  |-  ( y  =  <. B ,  0R >.  ->  ( ( (
<. A ,  0R >.  = 
<. z ,  0R >.  /\  y  =  <. w ,  0R >. )  /\  z  <R  w )  <->  ( ( <. A ,  0R >.  = 
<. z ,  0R >.  /\ 
<. B ,  0R >.  = 
<. w ,  0R >. )  /\  z  <R  w
) ) )
23222exbidv 1852 . . . . . . . 8  |-  ( y  =  <. B ,  0R >.  ->  ( E. z E. w ( ( <. A ,  0R >.  =  <. z ,  0R >.  /\  y  =  <. w ,  0R >. )  /\  z  <R  w )  <->  E. z E. w ( ( <. A ,  0R >.  =  <. z ,  0R >.  /\  <. B ,  0R >.  =  <. w ,  0R >. )  /\  z  <R  w ) ) )
2419, 23anbi12d 747 . . . . . . 7  |-  ( y  =  <. B ,  0R >.  ->  ( ( (
<. A ,  0R >.  e.  RR  /\  y  e.  RR )  /\  E. z E. w ( (
<. A ,  0R >.  = 
<. z ,  0R >.  /\  y  =  <. w ,  0R >. )  /\  z  <R  w ) )  <->  ( ( <. A ,  0R >.  e.  RR  /\  <. B ,  0R >.  e.  RR )  /\  E. z E. w ( ( <. A ,  0R >.  =  <. z ,  0R >.  /\  <. B ,  0R >.  =  <. w ,  0R >. )  /\  z  <R  w ) ) ) )
25 df-lt 9949 . . . . . . 7  |-  <RR  =  { <. x ,  y >.  |  ( ( x  e.  RR  /\  y  e.  RR )  /\  E. z E. w ( ( x  =  <. z ,  0R >.  /\  y  =  <. w ,  0R >. )  /\  z  <R  w ) ) }
269, 10, 17, 24, 25brab 4998 . . . . . 6  |-  ( <. A ,  0R >.  <RR  <. B ,  0R >. 
<->  ( ( <. A ,  0R >.  e.  RR  /\  <. B ,  0R >.  e.  RR )  /\  E. z E. w ( ( <. A ,  0R >.  =  <. z ,  0R >.  /\  <. B ,  0R >.  =  <. w ,  0R >. )  /\  z  <R  w ) ) )
2726baib 944 . . . . 5  |-  ( (
<. A ,  0R >.  e.  RR  /\  <. B ,  0R >.  e.  RR )  ->  ( <. A ,  0R >.  <RR  <. B ,  0R >.  <->  E. z E. w ( ( <. A ,  0R >.  =  <. z ,  0R >.  /\  <. B ,  0R >.  =  <. w ,  0R >. )  /\  z  <R  w ) ) )
28 vex 3203 . . . . . . . . . . 11  |-  z  e. 
_V
2928eqresr 9958 . . . . . . . . . 10  |-  ( <.
z ,  0R >.  = 
<. A ,  0R >.  <->  z  =  A )
30 eqcom 2629 . . . . . . . . . 10  |-  ( <. A ,  0R >.  =  <. z ,  0R >.  <->  <. z ,  0R >.  =  <. A ,  0R >. )
31 eqcom 2629 . . . . . . . . . 10  |-  ( A  =  z  <->  z  =  A )
3229, 30, 313bitr4i 292 . . . . . . . . 9  |-  ( <. A ,  0R >.  =  <. z ,  0R >.  <->  A  =  z )
33 vex 3203 . . . . . . . . . . 11  |-  w  e. 
_V
3433eqresr 9958 . . . . . . . . . 10  |-  ( <.
w ,  0R >.  = 
<. B ,  0R >.  <->  w  =  B )
35 eqcom 2629 . . . . . . . . . 10  |-  ( <. B ,  0R >.  =  <. w ,  0R >.  <->  <. w ,  0R >.  =  <. B ,  0R >. )
36 eqcom 2629 . . . . . . . . . 10  |-  ( B  =  w  <->  w  =  B )
3734, 35, 363bitr4i 292 . . . . . . . . 9  |-  ( <. B ,  0R >.  =  <. w ,  0R >.  <->  B  =  w )
3832, 37anbi12i 733 . . . . . . . 8  |-  ( (
<. A ,  0R >.  = 
<. z ,  0R >.  /\ 
<. B ,  0R >.  = 
<. w ,  0R >. )  <-> 
( A  =  z  /\  B  =  w ) )
3928, 33opth2 4949 . . . . . . . 8  |-  ( <. A ,  B >.  = 
<. z ,  w >.  <->  ( A  =  z  /\  B  =  w )
)
4038, 39bitr4i 267 . . . . . . 7  |-  ( (
<. A ,  0R >.  = 
<. z ,  0R >.  /\ 
<. B ,  0R >.  = 
<. w ,  0R >. )  <->  <. A ,  B >.  = 
<. z ,  w >. )
4140anbi1i 731 . . . . . 6  |-  ( ( ( <. A ,  0R >.  =  <. z ,  0R >.  /\  <. B ,  0R >.  =  <. w ,  0R >. )  /\  z  <R  w )  <->  ( <. A ,  B >.  =  <. z ,  w >.  /\  z  <R  w ) )
42412exbii 1775 . . . . 5  |-  ( E. z E. w ( ( <. A ,  0R >.  =  <. z ,  0R >.  /\  <. B ,  0R >.  =  <. w ,  0R >. )  /\  z  <R  w )  <->  E. z E. w ( <. A ,  B >.  =  <. z ,  w >.  /\  z  <R  w ) )
4327, 42syl6bb 276 . . . 4  |-  ( (
<. A ,  0R >.  e.  RR  /\  <. B ,  0R >.  e.  RR )  ->  ( <. A ,  0R >.  <RR  <. B ,  0R >.  <->  E. z E. w (
<. A ,  B >.  = 
<. z ,  w >.  /\  z  <R  w )
) )
443, 4, 43syl2anbr 497 . . 3  |-  ( ( A  e.  R.  /\  B  e.  R. )  ->  ( <. A ,  0R >. 
<RR  <. B ,  0R >.  <->  E. z E. w (
<. A ,  B >.  = 
<. z ,  w >.  /\  z  <R  w )
) )
45 breq12 4658 . . . 4  |-  ( ( z  =  A  /\  w  =  B )  ->  ( z  <R  w  <->  A 
<R  B ) )
4645copsex2g 4958 . . 3  |-  ( ( A  e.  R.  /\  B  e.  R. )  ->  ( E. z E. w ( <. A ,  B >.  =  <. z ,  w >.  /\  z  <R  w )  <->  A  <R  B ) )
4744, 46bitrd 268 . 2  |-  ( ( A  e.  R.  /\  B  e.  R. )  ->  ( <. A ,  0R >. 
<RR  <. B ,  0R >.  <-> 
A  <R  B ) )
486, 8, 47pm5.21nii 368 1  |-  ( <. A ,  0R >.  <RR  <. B ,  0R >. 
<->  A  <R  B )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   <.cop 4183   class class class wbr 4653   R.cnr 9687   0Rc0r 9688    <R cltr 9693   RRcr 9935    <RR cltrr 9940
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-omul 7565  df-er 7742  df-ec 7744  df-qs 7748  df-ni 9694  df-pli 9695  df-mi 9696  df-lti 9697  df-plpq 9730  df-mpq 9731  df-ltpq 9732  df-enq 9733  df-nq 9734  df-erq 9735  df-plq 9736  df-mq 9737  df-1nq 9738  df-rq 9739  df-ltnq 9740  df-np 9803  df-1p 9804  df-enr 9877  df-nr 9878  df-ltr 9881  df-0r 9882  df-r 9946  df-lt 9949
This theorem is referenced by:  ltresr2  9962  axpre-lttri  9986  axpre-lttrn  9987  axpre-ltadd  9988  axpre-mulgt0  9989  axpre-sup  9990
  Copyright terms: Public domain W3C validator