Proof of Theorem cotr2g
| Step | Hyp | Ref
| Expression |
| 1 | | cotrg 5507 |
. 2
  
            
     |
| 2 | | nfv 1843 |
. . . . . 6
  |
| 3 | | nfv 1843 |
. . . . . 6
  |
| 4 | 2, 3 | 19.21-2 2078 |
. . . . 5
                    

    

               |
| 5 | 4 | albii 1747 |
. . . 4
                      
                        |
| 6 | | simpl 473 |
. . . . . . . . . . 11
           |
| 7 | | id 22 |
. . . . . . . . . . 11
               |
| 8 | | simpr 477 |
. . . . . . . . . . 11
           |
| 9 | 6, 7, 8 | 3jca 1242 |
. . . . . . . . . 10
                     |
| 10 | | simp2 1062 |
. . . . . . . . . 10
                     |
| 11 | 9, 10 | impbii 199 |
. . . . . . . . 9
      
              |
| 12 | | cotr2g.d |
. . . . . . . . . . . 12
 |
| 13 | | vex 3203 |
. . . . . . . . . . . . 13
 |
| 14 | | vex 3203 |
. . . . . . . . . . . . 13
 |
| 15 | 13, 14 | breldm 5329 |
. . . . . . . . . . . 12
     |
| 16 | 12, 15 | sseldi 3601 |
. . . . . . . . . . 11
     |
| 17 | 16 | pm4.71ri 665 |
. . . . . . . . . 10
  

     |
| 18 | | cotr2g.e |
. . . . . . . . . . . 12

  |
| 19 | 13, 14 | brelrn 5356 |
. . . . . . . . . . . . 13
     |
| 20 | | vex 3203 |
. . . . . . . . . . . . . 14
 |
| 21 | 14, 20 | breldm 5329 |
. . . . . . . . . . . . 13
     |
| 22 | | elin 3796 |
. . . . . . . . . . . . . 14
  
    |
| 23 | 22 | biimpri 218 |
. . . . . . . . . . . . 13
 

    |
| 24 | 19, 21, 23 | syl2an 494 |
. . . . . . . . . . . 12
       
   |
| 25 | 18, 24 | sseldi 3601 |
. . . . . . . . . . 11
         |
| 26 | 25 | pm4.71ri 665 |
. . . . . . . . . 10
      

         |
| 27 | | cotr2g.f |
. . . . . . . . . . . 12
 |
| 28 | 14, 20 | brelrn 5356 |
. . . . . . . . . . . 12
     |
| 29 | 27, 28 | sseldi 3601 |
. . . . . . . . . . 11
     |
| 30 | 29 | pm4.71ri 665 |
. . . . . . . . . 10
  

     |
| 31 | 17, 26, 30 | 3anbi123i 1251 |
. . . . . . . . 9
            
                    |
| 32 | | 3an6 1409 |
. . . . . . . . . 10
                  
 
                |
| 33 | 10, 9 | impbii 199 |
. . . . . . . . . . 11
            
        |
| 34 | 33 | anbi2i 730 |
. . . . . . . . . 10
  

                         |
| 35 | 32, 34 | bitri 264 |
. . . . . . . . 9
                  
 
          |
| 36 | 11, 31, 35 | 3bitri 286 |
. . . . . . . 8
      
 
          |
| 37 | 36 | imbi1i 339 |
. . . . . . 7
       
  
  

            |
| 38 | | impexp 462 |
. . . . . . 7
                
       
      |
| 39 | | 3impexp 1289 |
. . . . . . 7
  

                             |
| 40 | 37, 38, 39 | 3bitri 286 |
. . . . . 6
       
  

                 |
| 41 | 40 | albii 1747 |
. . . . 5
            
                    |
| 42 | 41 | 2albii 1748 |
. . . 4
                
                        |
| 43 | | df-ral 2917 |
. . . 4
 
                         

               |
| 44 | 5, 42, 43 | 3bitr4i 292 |
. . 3
                

    

              |
| 45 | | df-ral 2917 |
. . . . . 6
 
  
             
                 |
| 46 | | 19.21v 1868 |
. . . . . . . 8
   

            
                 |
| 47 | 46 | bicomi 214 |
. . . . . . 7
    
                              |
| 48 | 47 | albii 1747 |
. . . . . 6
   
                                   |
| 49 | 45, 48 | bitri 264 |
. . . . 5
 
  
                               |
| 50 | 49 | bicomi 214 |
. . . 4
                      
             |
| 51 | 50 | ralbii 2980 |
. . 3
 
                   
  
             |
| 52 | 44, 51 | bitri 264 |
. 2
                


                |
| 53 | | df-ral 2917 |
. . . . 5
 
      
  
                |
| 54 | 53 | bicomi 214 |
. . . 4
   
           
            |
| 55 | 54 | ralbii 2980 |
. . 3
 
  
           

            |
| 56 | 55 | ralbii 2980 |
. 2
 

  
           


            |
| 57 | 1, 52, 56 | 3bitri 286 |
1
  



            |