Proof of Theorem cvmscbv
Step | Hyp | Ref
| Expression |
1 | | iscvm.1 |
. 2
                       
    ↾t    
↾t        |
2 | | unieq 4444 |
. . . . . . 7
     |
3 | 2 | eqeq1d 2624 |
. . . . . 6
  
     
        |
4 | | ineq2 3808 |
. . . . . . . . . . . 12
 
     |
5 | 4 | eqeq1d 2624 |
. . . . . . . . . . 11
   
     |
6 | 5 | cbvralv 3171 |
. . . . . . . . . 10
 
      
          |
7 | | sneq 4187 |
. . . . . . . . . . . 12
  
    |
8 | 7 | difeq2d 3728 |
. . . . . . . . . . 11
 
         |
9 | | ineq1 3807 |
. . . . . . . . . . . 12
 
     |
10 | 9 | eqeq1d 2624 |
. . . . . . . . . . 11
   
     |
11 | 8, 10 | raleqbidv 3152 |
. . . . . . . . . 10
  

                 |
12 | 6, 11 | syl5bb 272 |
. . . . . . . . 9
  

                 |
13 | | reseq2 5391 |
. . . . . . . . . 10
       |
14 | | oveq2 6658 |
. . . . . . . . . . 11
  ↾t   ↾t    |
15 | 14 | oveq1d 6665 |
. . . . . . . . . 10
  
↾t     ↾t    
↾t     ↾t     |
16 | 13, 15 | eleq12d 2695 |
. . . . . . . . 9
      ↾t     ↾t  
   
↾t     ↾t      |
17 | 12, 16 | anbi12d 747 |
. . . . . . . 8
          
    ↾t    
↾t            
    ↾t    
↾t       |
18 | 17 | cbvralv 3171 |
. . . . . . 7
 
 

         
↾t     ↾t   

 
           ↾t    
↾t      |
19 | | difeq1 3721 |
. . . . . . . . . 10
 
         |
20 | 19 | raleqdv 3144 |
. . . . . . . . 9
  

                 |
21 | 20 | anbi1d 741 |
. . . . . . . 8
          
    ↾t    
↾t            
    ↾t    
↾t       |
22 | 21 | raleqbi1dv 3146 |
. . . . . . 7
  
        
    ↾t    
↾t             
    ↾t    
↾t       |
23 | 18, 22 | syl5bb 272 |
. . . . . 6
  
        
    ↾t    
↾t             
    ↾t    
↾t       |
24 | 3, 23 | anbi12d 747 |
. . . . 5
         
 

         
↾t     ↾t            
 

         
↾t     ↾t        |
25 | 24 | cbvrabv 3199 |
. . . 4
             
 

         
↾t     ↾t                   
 

         
↾t     ↾t       |
26 | | imaeq2 5462 |
. . . . . . 7
             |
27 | 26 | eqeq2d 2632 |
. . . . . 6
  
     
        |
28 | | oveq2 6658 |
. . . . . . . . . 10
  ↾t   ↾t    |
29 | 28 | oveq2d 6666 |
. . . . . . . . 9
  
↾t     ↾t     ↾t    
↾t     |
30 | 29 | eleq2d 2687 |
. . . . . . . 8
      ↾t     ↾t  
   
↾t     ↾t      |
31 | 30 | anbi2d 740 |
. . . . . . 7
          
    ↾t    
↾t            
    ↾t    
↾t       |
32 | 31 | ralbidv 2986 |
. . . . . 6
  
        
    ↾t    
↾t             
    ↾t    
↾t       |
33 | 27, 32 | anbi12d 747 |
. . . . 5
         
 

         
↾t     ↾t            
 

         
↾t     ↾t        |
34 | 33 | rabbidv 3189 |
. . . 4
              
 

         
↾t     ↾t             
                  
↾t     ↾t        |
35 | 25, 34 | syl5eq 2668 |
. . 3
              
 

         
↾t     ↾t                   
 

         
↾t     ↾t        |
36 | 35 | cbvmptv 4750 |
. 2
              
 

         
↾t     ↾t               
                  
↾t     ↾t        |
37 | 1, 36 | eqtri 2644 |
1
                       
    ↾t    
↾t        |