Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmsss2 Structured version   Visualization version   Unicode version

Theorem cvmsss2 31256
Description: An open subset of an evenly covered set is evenly covered. (Contributed by Mario Carneiro, 7-Jul-2015.)
Hypothesis
Ref Expression
cvmcov.1  |-  S  =  ( k  e.  J  |->  { s  e.  ( ~P C  \  { (/)
} )  |  ( U. s  =  ( `' F " k )  /\  A. u  e.  s  ( A. v  e.  ( s  \  {
u } ) ( u  i^i  v )  =  (/)  /\  ( F  |`  u )  e.  ( ( Ct  u )
Homeo ( Jt  k ) ) ) ) } )
Assertion
Ref Expression
cvmsss2  |-  ( ( F  e.  ( C CovMap  J )  /\  V  e.  J  /\  V  C_  U )  ->  (
( S `  U
)  =/=  (/)  ->  ( S `  V )  =/=  (/) ) )
Distinct variable groups:    k, s, u, v, C    k, F, s, u, v    k, J, s, u, v    U, k, s, u, v    k, V, s, u, v
Allowed substitution hints:    S( v, u, k, s)

Proof of Theorem cvmsss2
Dummy variables  a 
b  t  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 n0 3931 . 2  |-  ( ( S `  U )  =/=  (/)  <->  E. x  x  e.  ( S `  U
) )
2 simpl2 1065 . . . . . 6  |-  ( ( ( F  e.  ( C CovMap  J )  /\  V  e.  J  /\  V  C_  U )  /\  x  e.  ( S `  U ) )  ->  V  e.  J )
3 simpl1 1064 . . . . . . . . . . . 12  |-  ( ( ( F  e.  ( C CovMap  J )  /\  V  e.  J  /\  V  C_  U )  /\  x  e.  ( S `  U ) )  ->  F  e.  ( C CovMap  J ) )
4 cvmtop1 31242 . . . . . . . . . . . 12  |-  ( F  e.  ( C CovMap  J
)  ->  C  e.  Top )
53, 4syl 17 . . . . . . . . . . 11  |-  ( ( ( F  e.  ( C CovMap  J )  /\  V  e.  J  /\  V  C_  U )  /\  x  e.  ( S `  U ) )  ->  C  e.  Top )
65adantr 481 . . . . . . . . . 10  |-  ( ( ( ( F  e.  ( C CovMap  J )  /\  V  e.  J  /\  V  C_  U )  /\  x  e.  ( S `  U ) )  /\  y  e.  x )  ->  C  e.  Top )
7 cvmcov.1 . . . . . . . . . . . . 13  |-  S  =  ( k  e.  J  |->  { s  e.  ( ~P C  \  { (/)
} )  |  ( U. s  =  ( `' F " k )  /\  A. u  e.  s  ( A. v  e.  ( s  \  {
u } ) ( u  i^i  v )  =  (/)  /\  ( F  |`  u )  e.  ( ( Ct  u )
Homeo ( Jt  k ) ) ) ) } )
87cvmsss 31249 . . . . . . . . . . . 12  |-  ( x  e.  ( S `  U )  ->  x  C_  C )
98adantl 482 . . . . . . . . . . 11  |-  ( ( ( F  e.  ( C CovMap  J )  /\  V  e.  J  /\  V  C_  U )  /\  x  e.  ( S `  U ) )  ->  x  C_  C )
109sselda 3603 . . . . . . . . . 10  |-  ( ( ( ( F  e.  ( C CovMap  J )  /\  V  e.  J  /\  V  C_  U )  /\  x  e.  ( S `  U ) )  /\  y  e.  x )  ->  y  e.  C )
11 cvmcn 31244 . . . . . . . . . . . . 13  |-  ( F  e.  ( C CovMap  J
)  ->  F  e.  ( C  Cn  J
) )
123, 11syl 17 . . . . . . . . . . . 12  |-  ( ( ( F  e.  ( C CovMap  J )  /\  V  e.  J  /\  V  C_  U )  /\  x  e.  ( S `  U ) )  ->  F  e.  ( C  Cn  J ) )
13 cnima 21069 . . . . . . . . . . . 12  |-  ( ( F  e.  ( C  Cn  J )  /\  V  e.  J )  ->  ( `' F " V )  e.  C
)
1412, 2, 13syl2anc 693 . . . . . . . . . . 11  |-  ( ( ( F  e.  ( C CovMap  J )  /\  V  e.  J  /\  V  C_  U )  /\  x  e.  ( S `  U ) )  -> 
( `' F " V )  e.  C
)
1514adantr 481 . . . . . . . . . 10  |-  ( ( ( ( F  e.  ( C CovMap  J )  /\  V  e.  J  /\  V  C_  U )  /\  x  e.  ( S `  U ) )  /\  y  e.  x )  ->  ( `' F " V )  e.  C )
16 inopn 20704 . . . . . . . . . 10  |-  ( ( C  e.  Top  /\  y  e.  C  /\  ( `' F " V )  e.  C )  -> 
( y  i^i  ( `' F " V ) )  e.  C )
176, 10, 15, 16syl3anc 1326 . . . . . . . . 9  |-  ( ( ( ( F  e.  ( C CovMap  J )  /\  V  e.  J  /\  V  C_  U )  /\  x  e.  ( S `  U ) )  /\  y  e.  x )  ->  (
y  i^i  ( `' F " V ) )  e.  C )
18 eqid 2622 . . . . . . . . 9  |-  ( y  e.  x  |->  ( y  i^i  ( `' F " V ) ) )  =  ( y  e.  x  |->  ( y  i^i  ( `' F " V ) ) )
1917, 18fmptd 6385 . . . . . . . 8  |-  ( ( ( F  e.  ( C CovMap  J )  /\  V  e.  J  /\  V  C_  U )  /\  x  e.  ( S `  U ) )  -> 
( y  e.  x  |->  ( y  i^i  ( `' F " V ) ) ) : x --> C )
20 frn 6053 . . . . . . . 8  |-  ( ( y  e.  x  |->  ( y  i^i  ( `' F " V ) ) ) : x --> C  ->  ran  ( y  e.  x  |->  ( y  i^i  ( `' F " V ) ) ) 
C_  C )
2119, 20syl 17 . . . . . . 7  |-  ( ( ( F  e.  ( C CovMap  J )  /\  V  e.  J  /\  V  C_  U )  /\  x  e.  ( S `  U ) )  ->  ran  ( y  e.  x  |->  ( y  i^i  ( `' F " V ) ) )  C_  C
)
227cvmsn0 31250 . . . . . . . . 9  |-  ( x  e.  ( S `  U )  ->  x  =/=  (/) )
2322adantl 482 . . . . . . . 8  |-  ( ( ( F  e.  ( C CovMap  J )  /\  V  e.  J  /\  V  C_  U )  /\  x  e.  ( S `  U ) )  ->  x  =/=  (/) )
24 dmmptg 5632 . . . . . . . . . . . 12  |-  ( A. y  e.  x  (
y  i^i  ( `' F " V ) )  e.  _V  ->  dom  ( y  e.  x  |->  ( y  i^i  ( `' F " V ) ) )  =  x )
25 inex1g 4801 . . . . . . . . . . . 12  |-  ( y  e.  x  ->  (
y  i^i  ( `' F " V ) )  e.  _V )
2624, 25mprg 2926 . . . . . . . . . . 11  |-  dom  (
y  e.  x  |->  ( y  i^i  ( `' F " V ) ) )  =  x
2726eqeq1i 2627 . . . . . . . . . 10  |-  ( dom  ( y  e.  x  |->  ( y  i^i  ( `' F " V ) ) )  =  (/)  <->  x  =  (/) )
28 dm0rn0 5342 . . . . . . . . . 10  |-  ( dom  ( y  e.  x  |->  ( y  i^i  ( `' F " V ) ) )  =  (/)  <->  ran  ( y  e.  x  |->  ( y  i^i  ( `' F " V ) ) )  =  (/) )
2927, 28bitr3i 266 . . . . . . . . 9  |-  ( x  =  (/)  <->  ran  ( y  e.  x  |->  ( y  i^i  ( `' F " V ) ) )  =  (/) )
3029necon3bii 2846 . . . . . . . 8  |-  ( x  =/=  (/)  <->  ran  ( y  e.  x  |->  ( y  i^i  ( `' F " V ) ) )  =/=  (/) )
3123, 30sylib 208 . . . . . . 7  |-  ( ( ( F  e.  ( C CovMap  J )  /\  V  e.  J  /\  V  C_  U )  /\  x  e.  ( S `  U ) )  ->  ran  ( y  e.  x  |->  ( y  i^i  ( `' F " V ) ) )  =/=  (/) )
3221, 31jca 554 . . . . . 6  |-  ( ( ( F  e.  ( C CovMap  J )  /\  V  e.  J  /\  V  C_  U )  /\  x  e.  ( S `  U ) )  -> 
( ran  ( y  e.  x  |->  ( y  i^i  ( `' F " V ) ) ) 
C_  C  /\  ran  ( y  e.  x  |->  ( y  i^i  ( `' F " V ) ) )  =/=  (/) ) )
33 inss2 3834 . . . . . . . . . . . 12  |-  ( y  i^i  ( `' F " V ) )  C_  ( `' F " V )
34 elpw2g 4827 . . . . . . . . . . . . 13  |-  ( ( `' F " V )  e.  C  ->  (
( y  i^i  ( `' F " V ) )  e.  ~P ( `' F " V )  <-> 
( y  i^i  ( `' F " V ) )  C_  ( `' F " V ) ) )
3515, 34syl 17 . . . . . . . . . . . 12  |-  ( ( ( ( F  e.  ( C CovMap  J )  /\  V  e.  J  /\  V  C_  U )  /\  x  e.  ( S `  U ) )  /\  y  e.  x )  ->  (
( y  i^i  ( `' F " V ) )  e.  ~P ( `' F " V )  <-> 
( y  i^i  ( `' F " V ) )  C_  ( `' F " V ) ) )
3633, 35mpbiri 248 . . . . . . . . . . 11  |-  ( ( ( ( F  e.  ( C CovMap  J )  /\  V  e.  J  /\  V  C_  U )  /\  x  e.  ( S `  U ) )  /\  y  e.  x )  ->  (
y  i^i  ( `' F " V ) )  e.  ~P ( `' F " V ) )
3736, 18fmptd 6385 . . . . . . . . . 10  |-  ( ( ( F  e.  ( C CovMap  J )  /\  V  e.  J  /\  V  C_  U )  /\  x  e.  ( S `  U ) )  -> 
( y  e.  x  |->  ( y  i^i  ( `' F " V ) ) ) : x --> ~P ( `' F " V ) )
38 frn 6053 . . . . . . . . . 10  |-  ( ( y  e.  x  |->  ( y  i^i  ( `' F " V ) ) ) : x --> ~P ( `' F " V )  ->  ran  ( y  e.  x  |->  ( y  i^i  ( `' F " V ) ) )  C_  ~P ( `' F " V ) )
3937, 38syl 17 . . . . . . . . 9  |-  ( ( ( F  e.  ( C CovMap  J )  /\  V  e.  J  /\  V  C_  U )  /\  x  e.  ( S `  U ) )  ->  ran  ( y  e.  x  |->  ( y  i^i  ( `' F " V ) ) )  C_  ~P ( `' F " V ) )
40 sspwuni 4611 . . . . . . . . 9  |-  ( ran  ( y  e.  x  |->  ( y  i^i  ( `' F " V ) ) )  C_  ~P ( `' F " V )  <->  U. ran  ( y  e.  x  |->  ( y  i^i  ( `' F " V ) ) ) 
C_  ( `' F " V ) )
4139, 40sylib 208 . . . . . . . 8  |-  ( ( ( F  e.  ( C CovMap  J )  /\  V  e.  J  /\  V  C_  U )  /\  x  e.  ( S `  U ) )  ->  U. ran  ( y  e.  x  |->  ( y  i^i  ( `' F " V ) ) ) 
C_  ( `' F " V ) )
42 simpl3 1066 . . . . . . . . . . . . . 14  |-  ( ( ( F  e.  ( C CovMap  J )  /\  V  e.  J  /\  V  C_  U )  /\  x  e.  ( S `  U ) )  ->  V  C_  U )
43 imass2 5501 . . . . . . . . . . . . . 14  |-  ( V 
C_  U  ->  ( `' F " V ) 
C_  ( `' F " U ) )
4442, 43syl 17 . . . . . . . . . . . . 13  |-  ( ( ( F  e.  ( C CovMap  J )  /\  V  e.  J  /\  V  C_  U )  /\  x  e.  ( S `  U ) )  -> 
( `' F " V )  C_  ( `' F " U ) )
457cvmsuni 31251 . . . . . . . . . . . . . 14  |-  ( x  e.  ( S `  U )  ->  U. x  =  ( `' F " U ) )
4645adantl 482 . . . . . . . . . . . . 13  |-  ( ( ( F  e.  ( C CovMap  J )  /\  V  e.  J  /\  V  C_  U )  /\  x  e.  ( S `  U ) )  ->  U. x  =  ( `' F " U ) )
4744, 46sseqtr4d 3642 . . . . . . . . . . . 12  |-  ( ( ( F  e.  ( C CovMap  J )  /\  V  e.  J  /\  V  C_  U )  /\  x  e.  ( S `  U ) )  -> 
( `' F " V )  C_  U. x
)
4847sselda 3603 . . . . . . . . . . 11  |-  ( ( ( ( F  e.  ( C CovMap  J )  /\  V  e.  J  /\  V  C_  U )  /\  x  e.  ( S `  U ) )  /\  z  e.  ( `' F " V ) )  -> 
z  e.  U. x
)
49 eqid 2622 . . . . . . . . . . . . . . . . 17  |-  ( t  i^i  ( `' F " V ) )  =  ( t  i^i  ( `' F " V ) )
50 ineq1 3807 . . . . . . . . . . . . . . . . . . 19  |-  ( y  =  t  ->  (
y  i^i  ( `' F " V ) )  =  ( t  i^i  ( `' F " V ) ) )
5150eqeq2d 2632 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  t  ->  (
( t  i^i  ( `' F " V ) )  =  ( y  i^i  ( `' F " V ) )  <->  ( t  i^i  ( `' F " V ) )  =  ( t  i^i  ( `' F " V ) ) ) )
5251rspcev 3309 . . . . . . . . . . . . . . . . 17  |-  ( ( t  e.  x  /\  ( t  i^i  ( `' F " V ) )  =  ( t  i^i  ( `' F " V ) ) )  ->  E. y  e.  x  ( t  i^i  ( `' F " V ) )  =  ( y  i^i  ( `' F " V ) ) )
5349, 52mpan2 707 . . . . . . . . . . . . . . . 16  |-  ( t  e.  x  ->  E. y  e.  x  ( t  i^i  ( `' F " V ) )  =  ( y  i^i  ( `' F " V ) ) )
5453ad2antrl 764 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( F  e.  ( C CovMap  J
)  /\  V  e.  J  /\  V  C_  U
)  /\  x  e.  ( S `  U ) )  /\  z  e.  ( `' F " V ) )  /\  ( t  e.  x  /\  z  e.  t
) )  ->  E. y  e.  x  ( t  i^i  ( `' F " V ) )  =  ( y  i^i  ( `' F " V ) ) )
55 vex 3203 . . . . . . . . . . . . . . . . 17  |-  t  e. 
_V
5655inex1 4799 . . . . . . . . . . . . . . . 16  |-  ( t  i^i  ( `' F " V ) )  e. 
_V
5718elrnmpt 5372 . . . . . . . . . . . . . . . 16  |-  ( ( t  i^i  ( `' F " V ) )  e.  _V  ->  ( ( t  i^i  ( `' F " V ) )  e.  ran  (
y  e.  x  |->  ( y  i^i  ( `' F " V ) ) )  <->  E. y  e.  x  ( t  i^i  ( `' F " V ) )  =  ( y  i^i  ( `' F " V ) ) ) )
5856, 57ax-mp 5 . . . . . . . . . . . . . . 15  |-  ( ( t  i^i  ( `' F " V ) )  e.  ran  (
y  e.  x  |->  ( y  i^i  ( `' F " V ) ) )  <->  E. y  e.  x  ( t  i^i  ( `' F " V ) )  =  ( y  i^i  ( `' F " V ) ) )
5954, 58sylibr 224 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( F  e.  ( C CovMap  J
)  /\  V  e.  J  /\  V  C_  U
)  /\  x  e.  ( S `  U ) )  /\  z  e.  ( `' F " V ) )  /\  ( t  e.  x  /\  z  e.  t
) )  ->  (
t  i^i  ( `' F " V ) )  e.  ran  ( y  e.  x  |->  ( y  i^i  ( `' F " V ) ) ) )
60 simprr 796 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( F  e.  ( C CovMap  J
)  /\  V  e.  J  /\  V  C_  U
)  /\  x  e.  ( S `  U ) )  /\  z  e.  ( `' F " V ) )  /\  ( t  e.  x  /\  z  e.  t
) )  ->  z  e.  t )
61 simplr 792 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( F  e.  ( C CovMap  J
)  /\  V  e.  J  /\  V  C_  U
)  /\  x  e.  ( S `  U ) )  /\  z  e.  ( `' F " V ) )  /\  ( t  e.  x  /\  z  e.  t
) )  ->  z  e.  ( `' F " V ) )
6260, 61elind 3798 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( F  e.  ( C CovMap  J
)  /\  V  e.  J  /\  V  C_  U
)  /\  x  e.  ( S `  U ) )  /\  z  e.  ( `' F " V ) )  /\  ( t  e.  x  /\  z  e.  t
) )  ->  z  e.  ( t  i^i  ( `' F " V ) ) )
63 eleq2 2690 . . . . . . . . . . . . . . 15  |-  ( w  =  ( t  i^i  ( `' F " V ) )  -> 
( z  e.  w  <->  z  e.  ( t  i^i  ( `' F " V ) ) ) )
6463rspcev 3309 . . . . . . . . . . . . . 14  |-  ( ( ( t  i^i  ( `' F " V ) )  e.  ran  (
y  e.  x  |->  ( y  i^i  ( `' F " V ) ) )  /\  z  e.  ( t  i^i  ( `' F " V ) ) )  ->  E. w  e.  ran  ( y  e.  x  |->  ( y  i^i  ( `' F " V ) ) ) z  e.  w )
6559, 62, 64syl2anc 693 . . . . . . . . . . . . 13  |-  ( ( ( ( ( F  e.  ( C CovMap  J
)  /\  V  e.  J  /\  V  C_  U
)  /\  x  e.  ( S `  U ) )  /\  z  e.  ( `' F " V ) )  /\  ( t  e.  x  /\  z  e.  t
) )  ->  E. w  e.  ran  ( y  e.  x  |->  ( y  i^i  ( `' F " V ) ) ) z  e.  w )
6665rexlimdvaa 3032 . . . . . . . . . . . 12  |-  ( ( ( ( F  e.  ( C CovMap  J )  /\  V  e.  J  /\  V  C_  U )  /\  x  e.  ( S `  U ) )  /\  z  e.  ( `' F " V ) )  -> 
( E. t  e.  x  z  e.  t  ->  E. w  e.  ran  ( y  e.  x  |->  ( y  i^i  ( `' F " V ) ) ) z  e.  w ) )
67 eluni2 4440 . . . . . . . . . . . 12  |-  ( z  e.  U. x  <->  E. t  e.  x  z  e.  t )
68 eluni2 4440 . . . . . . . . . . . 12  |-  ( z  e.  U. ran  (
y  e.  x  |->  ( y  i^i  ( `' F " V ) ) )  <->  E. w  e.  ran  ( y  e.  x  |->  ( y  i^i  ( `' F " V ) ) ) z  e.  w )
6966, 67, 683imtr4g 285 . . . . . . . . . . 11  |-  ( ( ( ( F  e.  ( C CovMap  J )  /\  V  e.  J  /\  V  C_  U )  /\  x  e.  ( S `  U ) )  /\  z  e.  ( `' F " V ) )  -> 
( z  e.  U. x  ->  z  e.  U. ran  ( y  e.  x  |->  ( y  i^i  ( `' F " V ) ) ) ) )
7048, 69mpd 15 . . . . . . . . . 10  |-  ( ( ( ( F  e.  ( C CovMap  J )  /\  V  e.  J  /\  V  C_  U )  /\  x  e.  ( S `  U ) )  /\  z  e.  ( `' F " V ) )  -> 
z  e.  U. ran  ( y  e.  x  |->  ( y  i^i  ( `' F " V ) ) ) )
7170ex 450 . . . . . . . . 9  |-  ( ( ( F  e.  ( C CovMap  J )  /\  V  e.  J  /\  V  C_  U )  /\  x  e.  ( S `  U ) )  -> 
( z  e.  ( `' F " V )  ->  z  e.  U. ran  ( y  e.  x  |->  ( y  i^i  ( `' F " V ) ) ) ) )
7271ssrdv 3609 . . . . . . . 8  |-  ( ( ( F  e.  ( C CovMap  J )  /\  V  e.  J  /\  V  C_  U )  /\  x  e.  ( S `  U ) )  -> 
( `' F " V )  C_  U. ran  ( y  e.  x  |->  ( y  i^i  ( `' F " V ) ) ) )
7341, 72eqssd 3620 . . . . . . 7  |-  ( ( ( F  e.  ( C CovMap  J )  /\  V  e.  J  /\  V  C_  U )  /\  x  e.  ( S `  U ) )  ->  U. ran  ( y  e.  x  |->  ( y  i^i  ( `' F " V ) ) )  =  ( `' F " V ) )
74 eldifsn 4317 . . . . . . . . . . . 12  |-  ( z  e.  ( ran  (
y  e.  x  |->  ( y  i^i  ( `' F " V ) ) )  \  {
( t  i^i  ( `' F " V ) ) } )  <->  ( z  e.  ran  ( y  e.  x  |->  ( y  i^i  ( `' F " V ) ) )  /\  z  =/=  (
t  i^i  ( `' F " V ) ) ) )
75 vex 3203 . . . . . . . . . . . . . . 15  |-  z  e. 
_V
7618elrnmpt 5372 . . . . . . . . . . . . . . 15  |-  ( z  e.  _V  ->  (
z  e.  ran  (
y  e.  x  |->  ( y  i^i  ( `' F " V ) ) )  <->  E. y  e.  x  z  =  ( y  i^i  ( `' F " V ) ) ) )
7775, 76ax-mp 5 . . . . . . . . . . . . . 14  |-  ( z  e.  ran  ( y  e.  x  |->  ( y  i^i  ( `' F " V ) ) )  <->  E. y  e.  x  z  =  ( y  i^i  ( `' F " V ) ) )
7850equcoms 1947 . . . . . . . . . . . . . . . . . 18  |-  ( t  =  y  ->  (
y  i^i  ( `' F " V ) )  =  ( t  i^i  ( `' F " V ) ) )
7978necon3ai 2819 . . . . . . . . . . . . . . . . 17  |-  ( ( y  i^i  ( `' F " V ) )  =/=  ( t  i^i  ( `' F " V ) )  ->  -.  t  =  y
)
80 simpllr 799 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( F  e.  ( C CovMap  J
)  /\  V  e.  J  /\  V  C_  U
)  /\  x  e.  ( S `  U ) )  /\  t  e.  x )  /\  y  e.  x )  ->  x  e.  ( S `  U
) )
81 simplr 792 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( F  e.  ( C CovMap  J
)  /\  V  e.  J  /\  V  C_  U
)  /\  x  e.  ( S `  U ) )  /\  t  e.  x )  /\  y  e.  x )  ->  t  e.  x )
82 simpr 477 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( F  e.  ( C CovMap  J
)  /\  V  e.  J  /\  V  C_  U
)  /\  x  e.  ( S `  U ) )  /\  t  e.  x )  /\  y  e.  x )  ->  y  e.  x )
837cvmsdisj 31252 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  ( S `
 U )  /\  t  e.  x  /\  y  e.  x )  ->  ( t  =  y  \/  ( t  i^i  y )  =  (/) ) )
8480, 81, 82, 83syl3anc 1326 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( F  e.  ( C CovMap  J
)  /\  V  e.  J  /\  V  C_  U
)  /\  x  e.  ( S `  U ) )  /\  t  e.  x )  /\  y  e.  x )  ->  (
t  =  y  \/  ( t  i^i  y
)  =  (/) ) )
8584ord 392 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( F  e.  ( C CovMap  J
)  /\  V  e.  J  /\  V  C_  U
)  /\  x  e.  ( S `  U ) )  /\  t  e.  x )  /\  y  e.  x )  ->  ( -.  t  =  y  ->  ( t  i^i  y
)  =  (/) ) )
86 inss1 3833 . . . . . . . . . . . . . . . . . 18  |-  ( ( t  i^i  y )  i^i  ( `' F " V ) )  C_  ( t  i^i  y
)
87 sseq0 3975 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( t  i^i  y )  i^i  ( `' F " V ) )  C_  ( t  i^i  y )  /\  (
t  i^i  y )  =  (/) )  ->  (
( t  i^i  y
)  i^i  ( `' F " V ) )  =  (/) )
8886, 87mpan 706 . . . . . . . . . . . . . . . . 17  |-  ( ( t  i^i  y )  =  (/)  ->  ( ( t  i^i  y )  i^i  ( `' F " V ) )  =  (/) )
8979, 85, 88syl56 36 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( F  e.  ( C CovMap  J
)  /\  V  e.  J  /\  V  C_  U
)  /\  x  e.  ( S `  U ) )  /\  t  e.  x )  /\  y  e.  x )  ->  (
( y  i^i  ( `' F " V ) )  =/=  ( t  i^i  ( `' F " V ) )  -> 
( ( t  i^i  y )  i^i  ( `' F " V ) )  =  (/) ) )
90 neeq1 2856 . . . . . . . . . . . . . . . . 17  |-  ( z  =  ( y  i^i  ( `' F " V ) )  -> 
( z  =/=  (
t  i^i  ( `' F " V ) )  <-> 
( y  i^i  ( `' F " V ) )  =/=  ( t  i^i  ( `' F " V ) ) ) )
91 ineq2 3808 . . . . . . . . . . . . . . . . . . 19  |-  ( z  =  ( y  i^i  ( `' F " V ) )  -> 
( ( t  i^i  ( `' F " V ) )  i^i  z )  =  ( ( t  i^i  ( `' F " V ) )  i^i  ( y  i^i  ( `' F " V ) ) ) )
92 inindir 3831 . . . . . . . . . . . . . . . . . . 19  |-  ( ( t  i^i  y )  i^i  ( `' F " V ) )  =  ( ( t  i^i  ( `' F " V ) )  i^i  ( y  i^i  ( `' F " V ) ) )
9391, 92syl6eqr 2674 . . . . . . . . . . . . . . . . . 18  |-  ( z  =  ( y  i^i  ( `' F " V ) )  -> 
( ( t  i^i  ( `' F " V ) )  i^i  z )  =  ( ( t  i^i  y
)  i^i  ( `' F " V ) ) )
9493eqeq1d 2624 . . . . . . . . . . . . . . . . 17  |-  ( z  =  ( y  i^i  ( `' F " V ) )  -> 
( ( ( t  i^i  ( `' F " V ) )  i^i  z )  =  (/)  <->  (
( t  i^i  y
)  i^i  ( `' F " V ) )  =  (/) ) )
9590, 94imbi12d 334 . . . . . . . . . . . . . . . 16  |-  ( z  =  ( y  i^i  ( `' F " V ) )  -> 
( ( z  =/=  ( t  i^i  ( `' F " V ) )  ->  ( (
t  i^i  ( `' F " V ) )  i^i  z )  =  (/) )  <->  ( ( y  i^i  ( `' F " V ) )  =/=  ( t  i^i  ( `' F " V ) )  ->  ( (
t  i^i  y )  i^i  ( `' F " V ) )  =  (/) ) ) )
9689, 95syl5ibrcom 237 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( F  e.  ( C CovMap  J
)  /\  V  e.  J  /\  V  C_  U
)  /\  x  e.  ( S `  U ) )  /\  t  e.  x )  /\  y  e.  x )  ->  (
z  =  ( y  i^i  ( `' F " V ) )  -> 
( z  =/=  (
t  i^i  ( `' F " V ) )  ->  ( ( t  i^i  ( `' F " V ) )  i^i  z )  =  (/) ) ) )
9796rexlimdva 3031 . . . . . . . . . . . . . 14  |-  ( ( ( ( F  e.  ( C CovMap  J )  /\  V  e.  J  /\  V  C_  U )  /\  x  e.  ( S `  U ) )  /\  t  e.  x )  ->  ( E. y  e.  x  z  =  ( y  i^i  ( `' F " V ) )  -> 
( z  =/=  (
t  i^i  ( `' F " V ) )  ->  ( ( t  i^i  ( `' F " V ) )  i^i  z )  =  (/) ) ) )
9877, 97syl5bi 232 . . . . . . . . . . . . 13  |-  ( ( ( ( F  e.  ( C CovMap  J )  /\  V  e.  J  /\  V  C_  U )  /\  x  e.  ( S `  U ) )  /\  t  e.  x )  ->  (
z  e.  ran  (
y  e.  x  |->  ( y  i^i  ( `' F " V ) ) )  ->  (
z  =/=  ( t  i^i  ( `' F " V ) )  -> 
( ( t  i^i  ( `' F " V ) )  i^i  z )  =  (/) ) ) )
9998impd 447 . . . . . . . . . . . 12  |-  ( ( ( ( F  e.  ( C CovMap  J )  /\  V  e.  J  /\  V  C_  U )  /\  x  e.  ( S `  U ) )  /\  t  e.  x )  ->  (
( z  e.  ran  ( y  e.  x  |->  ( y  i^i  ( `' F " V ) ) )  /\  z  =/=  ( t  i^i  ( `' F " V ) ) )  ->  (
( t  i^i  ( `' F " V ) )  i^i  z )  =  (/) ) )
10074, 99syl5bi 232 . . . . . . . . . . 11  |-  ( ( ( ( F  e.  ( C CovMap  J )  /\  V  e.  J  /\  V  C_  U )  /\  x  e.  ( S `  U ) )  /\  t  e.  x )  ->  (
z  e.  ( ran  ( y  e.  x  |->  ( y  i^i  ( `' F " V ) ) )  \  {
( t  i^i  ( `' F " V ) ) } )  -> 
( ( t  i^i  ( `' F " V ) )  i^i  z )  =  (/) ) )
101100ralrimiv 2965 . . . . . . . . . 10  |-  ( ( ( ( F  e.  ( C CovMap  J )  /\  V  e.  J  /\  V  C_  U )  /\  x  e.  ( S `  U ) )  /\  t  e.  x )  ->  A. z  e.  ( ran  ( y  e.  x  |->  ( y  i^i  ( `' F " V ) ) ) 
\  { ( t  i^i  ( `' F " V ) ) } ) ( ( t  i^i  ( `' F " V ) )  i^i  z )  =  (/) )
102 inss1 3833 . . . . . . . . . . . . 13  |-  ( t  i^i  ( `' F " V ) )  C_  t
103 resabs1 5427 . . . . . . . . . . . . 13  |-  ( ( t  i^i  ( `' F " V ) )  C_  t  ->  ( ( F  |`  t
)  |`  ( t  i^i  ( `' F " V ) ) )  =  ( F  |`  ( t  i^i  ( `' F " V ) ) ) )
104102, 103ax-mp 5 . . . . . . . . . . . 12  |-  ( ( F  |`  t )  |`  ( t  i^i  ( `' F " V ) ) )  =  ( F  |`  ( t  i^i  ( `' F " V ) ) )
1057cvmshmeo 31253 . . . . . . . . . . . . . 14  |-  ( ( x  e.  ( S `
 U )  /\  t  e.  x )  ->  ( F  |`  t
)  e.  ( ( Ct  t ) Homeo ( Jt  U ) ) )
106105adantll 750 . . . . . . . . . . . . 13  |-  ( ( ( ( F  e.  ( C CovMap  J )  /\  V  e.  J  /\  V  C_  U )  /\  x  e.  ( S `  U ) )  /\  t  e.  x )  ->  ( F  |`  t )  e.  ( ( Ct  t )
Homeo ( Jt  U ) ) )
1075adantr 481 . . . . . . . . . . . . . . 15  |-  ( ( ( ( F  e.  ( C CovMap  J )  /\  V  e.  J  /\  V  C_  U )  /\  x  e.  ( S `  U ) )  /\  t  e.  x )  ->  C  e.  Top )
1089sselda 3603 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( F  e.  ( C CovMap  J )  /\  V  e.  J  /\  V  C_  U )  /\  x  e.  ( S `  U ) )  /\  t  e.  x )  ->  t  e.  C )
109 elssuni 4467 . . . . . . . . . . . . . . . 16  |-  ( t  e.  C  ->  t  C_ 
U. C )
110108, 109syl 17 . . . . . . . . . . . . . . 15  |-  ( ( ( ( F  e.  ( C CovMap  J )  /\  V  e.  J  /\  V  C_  U )  /\  x  e.  ( S `  U ) )  /\  t  e.  x )  ->  t  C_ 
U. C )
111 eqid 2622 . . . . . . . . . . . . . . . 16  |-  U. C  =  U. C
112111restuni 20966 . . . . . . . . . . . . . . 15  |-  ( ( C  e.  Top  /\  t  C_  U. C )  ->  t  =  U. ( Ct  t ) )
113107, 110, 112syl2anc 693 . . . . . . . . . . . . . 14  |-  ( ( ( ( F  e.  ( C CovMap  J )  /\  V  e.  J  /\  V  C_  U )  /\  x  e.  ( S `  U ) )  /\  t  e.  x )  ->  t  =  U. ( Ct  t ) )
114102, 113syl5sseq 3653 . . . . . . . . . . . . 13  |-  ( ( ( ( F  e.  ( C CovMap  J )  /\  V  e.  J  /\  V  C_  U )  /\  x  e.  ( S `  U ) )  /\  t  e.  x )  ->  (
t  i^i  ( `' F " V ) ) 
C_  U. ( Ct  t ) )
115 eqid 2622 . . . . . . . . . . . . . 14  |-  U. ( Ct  t )  =  U. ( Ct  t )
116115hmeores 21574 . . . . . . . . . . . . 13  |-  ( ( ( F  |`  t
)  e.  ( ( Ct  t ) Homeo ( Jt  U ) )  /\  (
t  i^i  ( `' F " V ) ) 
C_  U. ( Ct  t ) )  ->  ( ( F  |`  t )  |`  ( t  i^i  ( `' F " V ) ) )  e.  ( ( ( Ct  t )t  ( t  i^i  ( `' F " V ) ) ) Homeo ( ( Jt  U )t  ( ( F  |`  t ) " (
t  i^i  ( `' F " V ) ) ) ) ) )
117106, 114, 116syl2anc 693 . . . . . . . . . . . 12  |-  ( ( ( ( F  e.  ( C CovMap  J )  /\  V  e.  J  /\  V  C_  U )  /\  x  e.  ( S `  U ) )  /\  t  e.  x )  ->  (
( F  |`  t
)  |`  ( t  i^i  ( `' F " V ) ) )  e.  ( ( ( Ct  t )t  ( t  i^i  ( `' F " V ) ) )
Homeo ( ( Jt  U )t  ( ( F  |`  t
) " ( t  i^i  ( `' F " V ) ) ) ) ) )
118104, 117syl5eqelr 2706 . . . . . . . . . . 11  |-  ( ( ( ( F  e.  ( C CovMap  J )  /\  V  e.  J  /\  V  C_  U )  /\  x  e.  ( S `  U ) )  /\  t  e.  x )  ->  ( F  |`  ( t  i^i  ( `' F " V ) ) )  e.  ( ( ( Ct  t )t  ( t  i^i  ( `' F " V ) ) )
Homeo ( ( Jt  U )t  ( ( F  |`  t
) " ( t  i^i  ( `' F " V ) ) ) ) ) )
119102a1i 11 . . . . . . . . . . . . 13  |-  ( ( ( ( F  e.  ( C CovMap  J )  /\  V  e.  J  /\  V  C_  U )  /\  x  e.  ( S `  U ) )  /\  t  e.  x )  ->  (
t  i^i  ( `' F " V ) ) 
C_  t )
120 simpr 477 . . . . . . . . . . . . 13  |-  ( ( ( ( F  e.  ( C CovMap  J )  /\  V  e.  J  /\  V  C_  U )  /\  x  e.  ( S `  U ) )  /\  t  e.  x )  ->  t  e.  x )
121 restabs 20969 . . . . . . . . . . . . 13  |-  ( ( C  e.  Top  /\  ( t  i^i  ( `' F " V ) )  C_  t  /\  t  e.  x )  ->  ( ( Ct  t )t  ( t  i^i  ( `' F " V ) ) )  =  ( Ct  ( t  i^i  ( `' F " V ) ) ) )
122107, 119, 120, 121syl3anc 1326 . . . . . . . . . . . 12  |-  ( ( ( ( F  e.  ( C CovMap  J )  /\  V  e.  J  /\  V  C_  U )  /\  x  e.  ( S `  U ) )  /\  t  e.  x )  ->  (
( Ct  t )t  ( t  i^i  ( `' F " V ) ) )  =  ( Ct  ( t  i^i  ( `' F " V ) ) ) )
123 incom 3805 . . . . . . . . . . . . . . . . 17  |-  ( t  i^i  ( `' F " V ) )  =  ( ( `' F " V )  i^i  t
)
124 cnvresima 5623 . . . . . . . . . . . . . . . . 17  |-  ( `' ( F  |`  t
) " V )  =  ( ( `' F " V )  i^i  t )
125123, 124eqtr4i 2647 . . . . . . . . . . . . . . . 16  |-  ( t  i^i  ( `' F " V ) )  =  ( `' ( F  |`  t ) " V
)
126125imaeq2i 5464 . . . . . . . . . . . . . . 15  |-  ( ( F  |`  t ) " ( t  i^i  ( `' F " V ) ) )  =  ( ( F  |`  t ) " ( `' ( F  |`  t ) " V
) )
1273adantr 481 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( F  e.  ( C CovMap  J )  /\  V  e.  J  /\  V  C_  U )  /\  x  e.  ( S `  U ) )  /\  t  e.  x )  ->  F  e.  ( C CovMap  J ) )
128 simplr 792 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( F  e.  ( C CovMap  J )  /\  V  e.  J  /\  V  C_  U )  /\  x  e.  ( S `  U ) )  /\  t  e.  x )  ->  x  e.  ( S `  U
) )
1297cvmsf1o 31254 . . . . . . . . . . . . . . . . . 18  |-  ( ( F  e.  ( C CovMap  J )  /\  x  e.  ( S `  U
)  /\  t  e.  x )  ->  ( F  |`  t ) : t -1-1-onto-> U )
130127, 128, 120, 129syl3anc 1326 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( F  e.  ( C CovMap  J )  /\  V  e.  J  /\  V  C_  U )  /\  x  e.  ( S `  U ) )  /\  t  e.  x )  ->  ( F  |`  t ) : t -1-1-onto-> U )
131 f1ofo 6144 . . . . . . . . . . . . . . . . 17  |-  ( ( F  |`  t ) : t -1-1-onto-> U  ->  ( F  |`  t ) : t
-onto-> U )
132130, 131syl 17 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( F  e.  ( C CovMap  J )  /\  V  e.  J  /\  V  C_  U )  /\  x  e.  ( S `  U ) )  /\  t  e.  x )  ->  ( F  |`  t ) : t -onto-> U )
13342adantr 481 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( F  e.  ( C CovMap  J )  /\  V  e.  J  /\  V  C_  U )  /\  x  e.  ( S `  U ) )  /\  t  e.  x )  ->  V  C_  U )
134 foimacnv 6154 . . . . . . . . . . . . . . . 16  |-  ( ( ( F  |`  t
) : t -onto-> U  /\  V  C_  U
)  ->  ( ( F  |`  t ) "
( `' ( F  |`  t ) " V
) )  =  V )
135132, 133, 134syl2anc 693 . . . . . . . . . . . . . . 15  |-  ( ( ( ( F  e.  ( C CovMap  J )  /\  V  e.  J  /\  V  C_  U )  /\  x  e.  ( S `  U ) )  /\  t  e.  x )  ->  (
( F  |`  t
) " ( `' ( F  |`  t
) " V ) )  =  V )
136126, 135syl5eq 2668 . . . . . . . . . . . . . 14  |-  ( ( ( ( F  e.  ( C CovMap  J )  /\  V  e.  J  /\  V  C_  U )  /\  x  e.  ( S `  U ) )  /\  t  e.  x )  ->  (
( F  |`  t
) " ( t  i^i  ( `' F " V ) ) )  =  V )
137136oveq2d 6666 . . . . . . . . . . . . 13  |-  ( ( ( ( F  e.  ( C CovMap  J )  /\  V  e.  J  /\  V  C_  U )  /\  x  e.  ( S `  U ) )  /\  t  e.  x )  ->  (
( Jt  U )t  ( ( F  |`  t ) " (
t  i^i  ( `' F " V ) ) ) )  =  ( ( Jt  U )t  V ) )
138 cvmtop2 31243 . . . . . . . . . . . . . . . 16  |-  ( F  e.  ( C CovMap  J
)  ->  J  e.  Top )
1393, 138syl 17 . . . . . . . . . . . . . . 15  |-  ( ( ( F  e.  ( C CovMap  J )  /\  V  e.  J  /\  V  C_  U )  /\  x  e.  ( S `  U ) )  ->  J  e.  Top )
1407cvmsrcl 31246 . . . . . . . . . . . . . . . 16  |-  ( x  e.  ( S `  U )  ->  U  e.  J )
141140adantl 482 . . . . . . . . . . . . . . 15  |-  ( ( ( F  e.  ( C CovMap  J )  /\  V  e.  J  /\  V  C_  U )  /\  x  e.  ( S `  U ) )  ->  U  e.  J )
142 restabs 20969 . . . . . . . . . . . . . . 15  |-  ( ( J  e.  Top  /\  V  C_  U  /\  U  e.  J )  ->  (
( Jt  U )t  V )  =  ( Jt  V ) )
143139, 42, 141, 142syl3anc 1326 . . . . . . . . . . . . . 14  |-  ( ( ( F  e.  ( C CovMap  J )  /\  V  e.  J  /\  V  C_  U )  /\  x  e.  ( S `  U ) )  -> 
( ( Jt  U )t  V )  =  ( Jt  V ) )
144143adantr 481 . . . . . . . . . . . . 13  |-  ( ( ( ( F  e.  ( C CovMap  J )  /\  V  e.  J  /\  V  C_  U )  /\  x  e.  ( S `  U ) )  /\  t  e.  x )  ->  (
( Jt  U )t  V )  =  ( Jt  V ) )
145137, 144eqtrd 2656 . . . . . . . . . . . 12  |-  ( ( ( ( F  e.  ( C CovMap  J )  /\  V  e.  J  /\  V  C_  U )  /\  x  e.  ( S `  U ) )  /\  t  e.  x )  ->  (
( Jt  U )t  ( ( F  |`  t ) " (
t  i^i  ( `' F " V ) ) ) )  =  ( Jt  V ) )
146122, 145oveq12d 6668 . . . . . . . . . . 11  |-  ( ( ( ( F  e.  ( C CovMap  J )  /\  V  e.  J  /\  V  C_  U )  /\  x  e.  ( S `  U ) )  /\  t  e.  x )  ->  (
( ( Ct  t )t  ( t  i^i  ( `' F " V ) ) ) Homeo ( ( Jt  U )t  ( ( F  |`  t ) " (
t  i^i  ( `' F " V ) ) ) ) )  =  ( ( Ct  ( t  i^i  ( `' F " V ) ) )
Homeo ( Jt  V ) ) )
147118, 146eleqtrd 2703 . . . . . . . . . 10  |-  ( ( ( ( F  e.  ( C CovMap  J )  /\  V  e.  J  /\  V  C_  U )  /\  x  e.  ( S `  U ) )  /\  t  e.  x )  ->  ( F  |`  ( t  i^i  ( `' F " V ) ) )  e.  ( ( Ct  ( t  i^i  ( `' F " V ) ) ) Homeo ( Jt  V ) ) )
148101, 147jca 554 . . . . . . . . 9  |-  ( ( ( ( F  e.  ( C CovMap  J )  /\  V  e.  J  /\  V  C_  U )  /\  x  e.  ( S `  U ) )  /\  t  e.  x )  ->  ( A. z  e.  ( ran  ( y  e.  x  |->  ( y  i^i  ( `' F " V ) ) )  \  {
( t  i^i  ( `' F " V ) ) } ) ( ( t  i^i  ( `' F " V ) )  i^i  z )  =  (/)  /\  ( F  |`  ( t  i^i  ( `' F " V ) ) )  e.  ( ( Ct  ( t  i^i  ( `' F " V ) ) ) Homeo ( Jt  V ) ) ) )
149148ralrimiva 2966 . . . . . . . 8  |-  ( ( ( F  e.  ( C CovMap  J )  /\  V  e.  J  /\  V  C_  U )  /\  x  e.  ( S `  U ) )  ->  A. t  e.  x  ( A. z  e.  ( ran  ( y  e.  x  |->  ( y  i^i  ( `' F " V ) ) ) 
\  { ( t  i^i  ( `' F " V ) ) } ) ( ( t  i^i  ( `' F " V ) )  i^i  z )  =  (/)  /\  ( F  |`  (
t  i^i  ( `' F " V ) ) )  e.  ( ( Ct  ( t  i^i  ( `' F " V ) ) ) Homeo ( Jt  V ) ) ) )
15056rgenw 2924 . . . . . . . . 9  |-  A. t  e.  x  ( t  i^i  ( `' F " V ) )  e. 
_V
15150cbvmptv 4750 . . . . . . . . . 10  |-  ( y  e.  x  |->  ( y  i^i  ( `' F " V ) ) )  =  ( t  e.  x  |->  ( t  i^i  ( `' F " V ) ) )
152 sneq 4187 . . . . . . . . . . . . 13  |-  ( w  =  ( t  i^i  ( `' F " V ) )  ->  { w }  =  { ( t  i^i  ( `' F " V ) ) } )
153152difeq2d 3728 . . . . . . . . . . . 12  |-  ( w  =  ( t  i^i  ( `' F " V ) )  -> 
( ran  ( y  e.  x  |->  ( y  i^i  ( `' F " V ) ) ) 
\  { w }
)  =  ( ran  ( y  e.  x  |->  ( y  i^i  ( `' F " V ) ) )  \  {
( t  i^i  ( `' F " V ) ) } ) )
154 ineq1 3807 . . . . . . . . . . . . 13  |-  ( w  =  ( t  i^i  ( `' F " V ) )  -> 
( w  i^i  z
)  =  ( ( t  i^i  ( `' F " V ) )  i^i  z ) )
155154eqeq1d 2624 . . . . . . . . . . . 12  |-  ( w  =  ( t  i^i  ( `' F " V ) )  -> 
( ( w  i^i  z )  =  (/)  <->  (
( t  i^i  ( `' F " V ) )  i^i  z )  =  (/) ) )
156153, 155raleqbidv 3152 . . . . . . . . . . 11  |-  ( w  =  ( t  i^i  ( `' F " V ) )  -> 
( A. z  e.  ( ran  ( y  e.  x  |->  ( y  i^i  ( `' F " V ) ) ) 
\  { w }
) ( w  i^i  z )  =  (/)  <->  A. z  e.  ( ran  ( y  e.  x  |->  ( y  i^i  ( `' F " V ) ) )  \  {
( t  i^i  ( `' F " V ) ) } ) ( ( t  i^i  ( `' F " V ) )  i^i  z )  =  (/) ) )
157 reseq2 5391 . . . . . . . . . . . 12  |-  ( w  =  ( t  i^i  ( `' F " V ) )  -> 
( F  |`  w
)  =  ( F  |`  ( t  i^i  ( `' F " V ) ) ) )
158 oveq2 6658 . . . . . . . . . . . . 13  |-  ( w  =  ( t  i^i  ( `' F " V ) )  -> 
( Ct  w )  =  ( Ct  ( t  i^i  ( `' F " V ) ) ) )
159158oveq1d 6665 . . . . . . . . . . . 12  |-  ( w  =  ( t  i^i  ( `' F " V ) )  -> 
( ( Ct  w )
Homeo ( Jt  V ) )  =  ( ( Ct  ( t  i^i  ( `' F " V ) ) )
Homeo ( Jt  V ) ) )
160157, 159eleq12d 2695 . . . . . . . . . . 11  |-  ( w  =  ( t  i^i  ( `' F " V ) )  -> 
( ( F  |`  w )  e.  ( ( Ct  w ) Homeo ( Jt  V ) )  <->  ( F  |`  ( t  i^i  ( `' F " V ) ) )  e.  ( ( Ct  ( t  i^i  ( `' F " V ) ) )
Homeo ( Jt  V ) ) ) )
161156, 160anbi12d 747 . . . . . . . . . 10  |-  ( w  =  ( t  i^i  ( `' F " V ) )  -> 
( ( A. z  e.  ( ran  ( y  e.  x  |->  ( y  i^i  ( `' F " V ) ) ) 
\  { w }
) ( w  i^i  z )  =  (/)  /\  ( F  |`  w
)  e.  ( ( Ct  w ) Homeo ( Jt  V ) ) )  <->  ( A. z  e.  ( ran  ( y  e.  x  |->  ( y  i^i  ( `' F " V ) ) )  \  {
( t  i^i  ( `' F " V ) ) } ) ( ( t  i^i  ( `' F " V ) )  i^i  z )  =  (/)  /\  ( F  |`  ( t  i^i  ( `' F " V ) ) )  e.  ( ( Ct  ( t  i^i  ( `' F " V ) ) ) Homeo ( Jt  V ) ) ) ) )
162151, 161ralrnmpt 6368 . . . . . . . . 9  |-  ( A. t  e.  x  (
t  i^i  ( `' F " V ) )  e.  _V  ->  ( A. w  e.  ran  ( y  e.  x  |->  ( y  i^i  ( `' F " V ) ) ) ( A. z  e.  ( ran  ( y  e.  x  |->  ( y  i^i  ( `' F " V ) ) )  \  {
w } ) ( w  i^i  z )  =  (/)  /\  ( F  |`  w )  e.  ( ( Ct  w )
Homeo ( Jt  V ) ) )  <->  A. t  e.  x  ( A. z  e.  ( ran  ( y  e.  x  |->  ( y  i^i  ( `' F " V ) ) ) 
\  { ( t  i^i  ( `' F " V ) ) } ) ( ( t  i^i  ( `' F " V ) )  i^i  z )  =  (/)  /\  ( F  |`  (
t  i^i  ( `' F " V ) ) )  e.  ( ( Ct  ( t  i^i  ( `' F " V ) ) ) Homeo ( Jt  V ) ) ) ) )
163150, 162ax-mp 5 . . . . . . . 8  |-  ( A. w  e.  ran  ( y  e.  x  |->  ( y  i^i  ( `' F " V ) ) ) ( A. z  e.  ( ran  ( y  e.  x  |->  ( y  i^i  ( `' F " V ) ) ) 
\  { w }
) ( w  i^i  z )  =  (/)  /\  ( F  |`  w
)  e.  ( ( Ct  w ) Homeo ( Jt  V ) ) )  <->  A. t  e.  x  ( A. z  e.  ( ran  ( y  e.  x  |->  ( y  i^i  ( `' F " V ) ) )  \  {
( t  i^i  ( `' F " V ) ) } ) ( ( t  i^i  ( `' F " V ) )  i^i  z )  =  (/)  /\  ( F  |`  ( t  i^i  ( `' F " V ) ) )  e.  ( ( Ct  ( t  i^i  ( `' F " V ) ) ) Homeo ( Jt  V ) ) ) )
164149, 163sylibr 224 . . . . . . 7  |-  ( ( ( F  e.  ( C CovMap  J )  /\  V  e.  J  /\  V  C_  U )  /\  x  e.  ( S `  U ) )  ->  A. w  e.  ran  ( y  e.  x  |->  ( y  i^i  ( `' F " V ) ) ) ( A. z  e.  ( ran  ( y  e.  x  |->  ( y  i^i  ( `' F " V ) ) )  \  {
w } ) ( w  i^i  z )  =  (/)  /\  ( F  |`  w )  e.  ( ( Ct  w )
Homeo ( Jt  V ) ) ) )
16573, 164jca 554 . . . . . 6  |-  ( ( ( F  e.  ( C CovMap  J )  /\  V  e.  J  /\  V  C_  U )  /\  x  e.  ( S `  U ) )  -> 
( U. ran  (
y  e.  x  |->  ( y  i^i  ( `' F " V ) ) )  =  ( `' F " V )  /\  A. w  e. 
ran  ( y  e.  x  |->  ( y  i^i  ( `' F " V ) ) ) ( A. z  e.  ( ran  ( y  e.  x  |->  ( y  i^i  ( `' F " V ) ) ) 
\  { w }
) ( w  i^i  z )  =  (/)  /\  ( F  |`  w
)  e.  ( ( Ct  w ) Homeo ( Jt  V ) ) ) ) )
1667cvmscbv 31240 . . . . . . . 8  |-  S  =  ( a  e.  J  |->  { b  e.  ( ~P C  \  { (/)
} )  |  ( U. b  =  ( `' F " a )  /\  A. w  e.  b  ( A. z  e.  ( b  \  {
w } ) ( w  i^i  z )  =  (/)  /\  ( F  |`  w )  e.  ( ( Ct  w )
Homeo ( Jt  a ) ) ) ) } )
167166cvmsval 31248 . . . . . . 7  |-  ( C  e.  Top  ->  ( ran  ( y  e.  x  |->  ( y  i^i  ( `' F " V ) ) )  e.  ( S `  V )  <-> 
( V  e.  J  /\  ( ran  ( y  e.  x  |->  ( y  i^i  ( `' F " V ) ) ) 
C_  C  /\  ran  ( y  e.  x  |->  ( y  i^i  ( `' F " V ) ) )  =/=  (/) )  /\  ( U. ran  ( y  e.  x  |->  ( y  i^i  ( `' F " V ) ) )  =  ( `' F " V )  /\  A. w  e.  ran  ( y  e.  x  |->  ( y  i^i  ( `' F " V ) ) ) ( A. z  e.  ( ran  ( y  e.  x  |->  ( y  i^i  ( `' F " V ) ) ) 
\  { w }
) ( w  i^i  z )  =  (/)  /\  ( F  |`  w
)  e.  ( ( Ct  w ) Homeo ( Jt  V ) ) ) ) ) ) )
1685, 167syl 17 . . . . . 6  |-  ( ( ( F  e.  ( C CovMap  J )  /\  V  e.  J  /\  V  C_  U )  /\  x  e.  ( S `  U ) )  -> 
( ran  ( y  e.  x  |->  ( y  i^i  ( `' F " V ) ) )  e.  ( S `  V )  <->  ( V  e.  J  /\  ( ran  ( y  e.  x  |->  ( y  i^i  ( `' F " V ) ) )  C_  C  /\  ran  ( y  e.  x  |->  ( y  i^i  ( `' F " V ) ) )  =/=  (/) )  /\  ( U. ran  ( y  e.  x  |->  ( y  i^i  ( `' F " V ) ) )  =  ( `' F " V )  /\  A. w  e.  ran  ( y  e.  x  |->  ( y  i^i  ( `' F " V ) ) ) ( A. z  e.  ( ran  ( y  e.  x  |->  ( y  i^i  ( `' F " V ) ) ) 
\  { w }
) ( w  i^i  z )  =  (/)  /\  ( F  |`  w
)  e.  ( ( Ct  w ) Homeo ( Jt  V ) ) ) ) ) ) )
1692, 32, 165, 168mpbir3and 1245 . . . . 5  |-  ( ( ( F  e.  ( C CovMap  J )  /\  V  e.  J  /\  V  C_  U )  /\  x  e.  ( S `  U ) )  ->  ran  ( y  e.  x  |->  ( y  i^i  ( `' F " V ) ) )  e.  ( S `  V ) )
170 ne0i 3921 . . . . 5  |-  ( ran  ( y  e.  x  |->  ( y  i^i  ( `' F " V ) ) )  e.  ( S `  V )  ->  ( S `  V )  =/=  (/) )
171169, 170syl 17 . . . 4  |-  ( ( ( F  e.  ( C CovMap  J )  /\  V  e.  J  /\  V  C_  U )  /\  x  e.  ( S `  U ) )  -> 
( S `  V
)  =/=  (/) )
172171ex 450 . . 3  |-  ( ( F  e.  ( C CovMap  J )  /\  V  e.  J  /\  V  C_  U )  ->  (
x  e.  ( S `
 U )  -> 
( S `  V
)  =/=  (/) ) )
173172exlimdv 1861 . 2  |-  ( ( F  e.  ( C CovMap  J )  /\  V  e.  J  /\  V  C_  U )  ->  ( E. x  x  e.  ( S `  U )  ->  ( S `  V )  =/=  (/) ) )
1741, 173syl5bi 232 1  |-  ( ( F  e.  ( C CovMap  J )  /\  V  e.  J  /\  V  C_  U )  ->  (
( S `  U
)  =/=  (/)  ->  ( S `  V )  =/=  (/) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483   E.wex 1704    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   {crab 2916   _Vcvv 3200    \ cdif 3571    i^i cin 3573    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   {csn 4177   U.cuni 4436    |-> cmpt 4729   `'ccnv 5113   dom cdm 5114   ran crn 5115    |` cres 5116   "cima 5117   -->wf 5884   -onto->wfo 5886   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650   ↾t crest 16081   Topctop 20698    Cn ccn 21028   Homeochmeo 21556   CovMap ccvm 31237
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-fin 7959  df-fi 8317  df-rest 16083  df-topgen 16104  df-top 20699  df-topon 20716  df-bases 20750  df-cn 21031  df-hmeo 21558  df-cvm 31238
This theorem is referenced by:  cvmcov2  31257
  Copyright terms: Public domain W3C validator