Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmseu Structured version   Visualization version   Unicode version

Theorem cvmseu 31258
Description: Every element in  U. T is a member of a unique element of  T. (Contributed by Mario Carneiro, 14-Feb-2015.)
Hypotheses
Ref Expression
cvmcov.1  |-  S  =  ( k  e.  J  |->  { s  e.  ( ~P C  \  { (/)
} )  |  ( U. s  =  ( `' F " k )  /\  A. u  e.  s  ( A. v  e.  ( s  \  {
u } ) ( u  i^i  v )  =  (/)  /\  ( F  |`  u )  e.  ( ( Ct  u )
Homeo ( Jt  k ) ) ) ) } )
cvmseu.1  |-  B  = 
U. C
Assertion
Ref Expression
cvmseu  |-  ( ( F  e.  ( C CovMap  J )  /\  ( T  e.  ( S `  U )  /\  A  e.  B  /\  ( F `  A )  e.  U ) )  ->  E! x  e.  T  A  e.  x )
Distinct variable groups:    k, s, u, v, x, C    k, F, s, u, v, x   
k, J, s, u, v, x    x, S    U, k, s, u, v, x    T, s, u, v, x    u, A, v, x    v, B, x
Allowed substitution hints:    A( k, s)    B( u, k, s)    S( v, u, k, s)    T( k)

Proof of Theorem cvmseu
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 simpr2 1068 . . . . 5  |-  ( ( F  e.  ( C CovMap  J )  /\  ( T  e.  ( S `  U )  /\  A  e.  B  /\  ( F `  A )  e.  U ) )  ->  A  e.  B )
2 simpr3 1069 . . . . 5  |-  ( ( F  e.  ( C CovMap  J )  /\  ( T  e.  ( S `  U )  /\  A  e.  B  /\  ( F `  A )  e.  U ) )  -> 
( F `  A
)  e.  U )
3 cvmcn 31244 . . . . . . 7  |-  ( F  e.  ( C CovMap  J
)  ->  F  e.  ( C  Cn  J
) )
43adantr 481 . . . . . 6  |-  ( ( F  e.  ( C CovMap  J )  /\  ( T  e.  ( S `  U )  /\  A  e.  B  /\  ( F `  A )  e.  U ) )  ->  F  e.  ( C  Cn  J ) )
5 cvmseu.1 . . . . . . 7  |-  B  = 
U. C
6 eqid 2622 . . . . . . 7  |-  U. J  =  U. J
75, 6cnf 21050 . . . . . 6  |-  ( F  e.  ( C  Cn  J )  ->  F : B --> U. J )
8 ffn 6045 . . . . . 6  |-  ( F : B --> U. J  ->  F  Fn  B )
9 elpreima 6337 . . . . . 6  |-  ( F  Fn  B  ->  ( A  e.  ( `' F " U )  <->  ( A  e.  B  /\  ( F `  A )  e.  U ) ) )
104, 7, 8, 94syl 19 . . . . 5  |-  ( ( F  e.  ( C CovMap  J )  /\  ( T  e.  ( S `  U )  /\  A  e.  B  /\  ( F `  A )  e.  U ) )  -> 
( A  e.  ( `' F " U )  <-> 
( A  e.  B  /\  ( F `  A
)  e.  U ) ) )
111, 2, 10mpbir2and 957 . . . 4  |-  ( ( F  e.  ( C CovMap  J )  /\  ( T  e.  ( S `  U )  /\  A  e.  B  /\  ( F `  A )  e.  U ) )  ->  A  e.  ( `' F " U ) )
12 simpr1 1067 . . . . 5  |-  ( ( F  e.  ( C CovMap  J )  /\  ( T  e.  ( S `  U )  /\  A  e.  B  /\  ( F `  A )  e.  U ) )  ->  T  e.  ( S `  U ) )
13 cvmcov.1 . . . . . 6  |-  S  =  ( k  e.  J  |->  { s  e.  ( ~P C  \  { (/)
} )  |  ( U. s  =  ( `' F " k )  /\  A. u  e.  s  ( A. v  e.  ( s  \  {
u } ) ( u  i^i  v )  =  (/)  /\  ( F  |`  u )  e.  ( ( Ct  u )
Homeo ( Jt  k ) ) ) ) } )
1413cvmsuni 31251 . . . . 5  |-  ( T  e.  ( S `  U )  ->  U. T  =  ( `' F " U ) )
1512, 14syl 17 . . . 4  |-  ( ( F  e.  ( C CovMap  J )  /\  ( T  e.  ( S `  U )  /\  A  e.  B  /\  ( F `  A )  e.  U ) )  ->  U. T  =  ( `' F " U ) )
1611, 15eleqtrrd 2704 . . 3  |-  ( ( F  e.  ( C CovMap  J )  /\  ( T  e.  ( S `  U )  /\  A  e.  B  /\  ( F `  A )  e.  U ) )  ->  A  e.  U. T )
17 eluni2 4440 . . 3  |-  ( A  e.  U. T  <->  E. x  e.  T  A  e.  x )
1816, 17sylib 208 . 2  |-  ( ( F  e.  ( C CovMap  J )  /\  ( T  e.  ( S `  U )  /\  A  e.  B  /\  ( F `  A )  e.  U ) )  ->  E. x  e.  T  A  e.  x )
19 inelcm 4032 . . . 4  |-  ( ( A  e.  x  /\  A  e.  z )  ->  ( x  i^i  z
)  =/=  (/) )
2013cvmsdisj 31252 . . . . . . . 8  |-  ( ( T  e.  ( S `
 U )  /\  x  e.  T  /\  z  e.  T )  ->  ( x  =  z  \/  ( x  i^i  z )  =  (/) ) )
21203expb 1266 . . . . . . 7  |-  ( ( T  e.  ( S `
 U )  /\  ( x  e.  T  /\  z  e.  T
) )  ->  (
x  =  z  \/  ( x  i^i  z
)  =  (/) ) )
2212, 21sylan 488 . . . . . 6  |-  ( ( ( F  e.  ( C CovMap  J )  /\  ( T  e.  ( S `  U )  /\  A  e.  B  /\  ( F `  A
)  e.  U ) )  /\  ( x  e.  T  /\  z  e.  T ) )  -> 
( x  =  z  \/  ( x  i^i  z )  =  (/) ) )
2322ord 392 . . . . 5  |-  ( ( ( F  e.  ( C CovMap  J )  /\  ( T  e.  ( S `  U )  /\  A  e.  B  /\  ( F `  A
)  e.  U ) )  /\  ( x  e.  T  /\  z  e.  T ) )  -> 
( -.  x  =  z  ->  ( x  i^i  z )  =  (/) ) )
2423necon1ad 2811 . . . 4  |-  ( ( ( F  e.  ( C CovMap  J )  /\  ( T  e.  ( S `  U )  /\  A  e.  B  /\  ( F `  A
)  e.  U ) )  /\  ( x  e.  T  /\  z  e.  T ) )  -> 
( ( x  i^i  z )  =/=  (/)  ->  x  =  z ) )
2519, 24syl5 34 . . 3  |-  ( ( ( F  e.  ( C CovMap  J )  /\  ( T  e.  ( S `  U )  /\  A  e.  B  /\  ( F `  A
)  e.  U ) )  /\  ( x  e.  T  /\  z  e.  T ) )  -> 
( ( A  e.  x  /\  A  e.  z )  ->  x  =  z ) )
2625ralrimivva 2971 . 2  |-  ( ( F  e.  ( C CovMap  J )  /\  ( T  e.  ( S `  U )  /\  A  e.  B  /\  ( F `  A )  e.  U ) )  ->  A. x  e.  T  A. z  e.  T  ( ( A  e.  x  /\  A  e.  z )  ->  x  =  z ) )
27 eleq2 2690 . . 3  |-  ( x  =  z  ->  ( A  e.  x  <->  A  e.  z ) )
2827reu4 3400 . 2  |-  ( E! x  e.  T  A  e.  x  <->  ( E. x  e.  T  A  e.  x  /\  A. x  e.  T  A. z  e.  T  ( ( A  e.  x  /\  A  e.  z )  ->  x  =  z ) ) )
2918, 26, 28sylanbrc 698 1  |-  ( ( F  e.  ( C CovMap  J )  /\  ( T  e.  ( S `  U )  /\  A  e.  B  /\  ( F `  A )  e.  U ) )  ->  E! x  e.  T  A  e.  x )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   E!wreu 2914   {crab 2916    \ cdif 3571    i^i cin 3573   (/)c0 3915   ~Pcpw 4158   {csn 4177   U.cuni 4436    |-> cmpt 4729   `'ccnv 5113    |` cres 5116   "cima 5117    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650   ↾t crest 16081    Cn ccn 21028   Homeochmeo 21556   CovMap ccvm 31237
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-map 7859  df-top 20699  df-topon 20716  df-cn 21031  df-cvm 31238
This theorem is referenced by:  cvmsiota  31259
  Copyright terms: Public domain W3C validator