| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cvmsdisj | Structured version Visualization version Unicode version | ||
| Description: An even covering of |
| Ref | Expression |
|---|---|
| cvmcov.1 |
|
| Ref | Expression |
|---|---|
| cvmsdisj |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ne 2795 |
. . 3
| |
| 2 | cvmcov.1 |
. . . . . . . . . . 11
| |
| 3 | 2 | cvmsi 31247 |
. . . . . . . . . 10
|
| 4 | 3 | simp3d 1075 |
. . . . . . . . 9
|
| 5 | 4 | simprd 479 |
. . . . . . . 8
|
| 6 | simpl 473 |
. . . . . . . . 9
| |
| 7 | 6 | ralimi 2952 |
. . . . . . . 8
|
| 8 | 5, 7 | syl 17 |
. . . . . . 7
|
| 9 | sneq 4187 |
. . . . . . . . . 10
| |
| 10 | 9 | difeq2d 3728 |
. . . . . . . . 9
|
| 11 | ineq1 3807 |
. . . . . . . . . 10
| |
| 12 | 11 | eqeq1d 2624 |
. . . . . . . . 9
|
| 13 | 10, 12 | raleqbidv 3152 |
. . . . . . . 8
|
| 14 | 13 | rspccva 3308 |
. . . . . . 7
|
| 15 | 8, 14 | sylan 488 |
. . . . . 6
|
| 16 | necom 2847 |
. . . . . . 7
| |
| 17 | eldifsn 4317 |
. . . . . . . 8
| |
| 18 | 17 | biimpri 218 |
. . . . . . 7
|
| 19 | 16, 18 | sylan2b 492 |
. . . . . 6
|
| 20 | ineq2 3808 |
. . . . . . . 8
| |
| 21 | 20 | eqeq1d 2624 |
. . . . . . 7
|
| 22 | 21 | rspccv 3306 |
. . . . . 6
|
| 23 | 15, 19, 22 | syl2im 40 |
. . . . 5
|
| 24 | 23 | expd 452 |
. . . 4
|
| 25 | 24 | 3impia 1261 |
. . 3
|
| 26 | 1, 25 | syl5bir 233 |
. 2
|
| 27 | 26 | orrd 393 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fv 5896 df-ov 6653 |
| This theorem is referenced by: cvmscld 31255 cvmsss2 31256 cvmseu 31258 |
| Copyright terms: Public domain | W3C validator |