Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmsdisj Structured version   Visualization version   Unicode version

Theorem cvmsdisj 31252
Description: An even covering of  U is a disjoint union. (Contributed by Mario Carneiro, 13-Feb-2015.)
Hypothesis
Ref Expression
cvmcov.1  |-  S  =  ( k  e.  J  |->  { s  e.  ( ~P C  \  { (/)
} )  |  ( U. s  =  ( `' F " k )  /\  A. u  e.  s  ( A. v  e.  ( s  \  {
u } ) ( u  i^i  v )  =  (/)  /\  ( F  |`  u )  e.  ( ( Ct  u )
Homeo ( Jt  k ) ) ) ) } )
Assertion
Ref Expression
cvmsdisj  |-  ( ( T  e.  ( S `
 U )  /\  A  e.  T  /\  B  e.  T )  ->  ( A  =  B  \/  ( A  i^i  B )  =  (/) ) )
Distinct variable groups:    k, s, u, v, C    k, F, s, u, v    k, J, s, u, v    U, k, s, u, v    T, s, u, v    u, A, v    v, B
Allowed substitution hints:    A( k, s)    B( u, k, s)    S( v, u, k, s)    T( k)

Proof of Theorem cvmsdisj
StepHypRef Expression
1 df-ne 2795 . . 3  |-  ( A  =/=  B  <->  -.  A  =  B )
2 cvmcov.1 . . . . . . . . . . 11  |-  S  =  ( k  e.  J  |->  { s  e.  ( ~P C  \  { (/)
} )  |  ( U. s  =  ( `' F " k )  /\  A. u  e.  s  ( A. v  e.  ( s  \  {
u } ) ( u  i^i  v )  =  (/)  /\  ( F  |`  u )  e.  ( ( Ct  u )
Homeo ( Jt  k ) ) ) ) } )
32cvmsi 31247 . . . . . . . . . 10  |-  ( T  e.  ( S `  U )  ->  ( U  e.  J  /\  ( T  C_  C  /\  T  =/=  (/) )  /\  ( U. T  =  ( `' F " U )  /\  A. u  e.  T  ( A. v  e.  ( T  \  {
u } ) ( u  i^i  v )  =  (/)  /\  ( F  |`  u )  e.  ( ( Ct  u )
Homeo ( Jt  U ) ) ) ) ) )
43simp3d 1075 . . . . . . . . 9  |-  ( T  e.  ( S `  U )  ->  ( U. T  =  ( `' F " U )  /\  A. u  e.  T  ( A. v  e.  ( T  \  {
u } ) ( u  i^i  v )  =  (/)  /\  ( F  |`  u )  e.  ( ( Ct  u )
Homeo ( Jt  U ) ) ) ) )
54simprd 479 . . . . . . . 8  |-  ( T  e.  ( S `  U )  ->  A. u  e.  T  ( A. v  e.  ( T  \  { u } ) ( u  i^i  v
)  =  (/)  /\  ( F  |`  u )  e.  ( ( Ct  u )
Homeo ( Jt  U ) ) ) )
6 simpl 473 . . . . . . . . 9  |-  ( ( A. v  e.  ( T  \  { u } ) ( u  i^i  v )  =  (/)  /\  ( F  |`  u )  e.  ( ( Ct  u ) Homeo ( Jt  U ) ) )  ->  A. v  e.  ( T  \  { u }
) ( u  i^i  v )  =  (/) )
76ralimi 2952 . . . . . . . 8  |-  ( A. u  e.  T  ( A. v  e.  ( T  \  { u }
) ( u  i^i  v )  =  (/)  /\  ( F  |`  u
)  e.  ( ( Ct  u ) Homeo ( Jt  U ) ) )  ->  A. u  e.  T  A. v  e.  ( T  \  { u }
) ( u  i^i  v )  =  (/) )
85, 7syl 17 . . . . . . 7  |-  ( T  e.  ( S `  U )  ->  A. u  e.  T  A. v  e.  ( T  \  {
u } ) ( u  i^i  v )  =  (/) )
9 sneq 4187 . . . . . . . . . 10  |-  ( u  =  A  ->  { u }  =  { A } )
109difeq2d 3728 . . . . . . . . 9  |-  ( u  =  A  ->  ( T  \  { u }
)  =  ( T 
\  { A }
) )
11 ineq1 3807 . . . . . . . . . 10  |-  ( u  =  A  ->  (
u  i^i  v )  =  ( A  i^i  v ) )
1211eqeq1d 2624 . . . . . . . . 9  |-  ( u  =  A  ->  (
( u  i^i  v
)  =  (/)  <->  ( A  i^i  v )  =  (/) ) )
1310, 12raleqbidv 3152 . . . . . . . 8  |-  ( u  =  A  ->  ( A. v  e.  ( T  \  { u }
) ( u  i^i  v )  =  (/)  <->  A. v  e.  ( T  \  { A } ) ( A  i^i  v
)  =  (/) ) )
1413rspccva 3308 . . . . . . 7  |-  ( ( A. u  e.  T  A. v  e.  ( T  \  { u }
) ( u  i^i  v )  =  (/)  /\  A  e.  T )  ->  A. v  e.  ( T  \  { A } ) ( A  i^i  v )  =  (/) )
158, 14sylan 488 . . . . . 6  |-  ( ( T  e.  ( S `
 U )  /\  A  e.  T )  ->  A. v  e.  ( T  \  { A } ) ( A  i^i  v )  =  (/) )
16 necom 2847 . . . . . . 7  |-  ( A  =/=  B  <->  B  =/=  A )
17 eldifsn 4317 . . . . . . . 8  |-  ( B  e.  ( T  \  { A } )  <->  ( B  e.  T  /\  B  =/= 
A ) )
1817biimpri 218 . . . . . . 7  |-  ( ( B  e.  T  /\  B  =/=  A )  ->  B  e.  ( T  \  { A } ) )
1916, 18sylan2b 492 . . . . . 6  |-  ( ( B  e.  T  /\  A  =/=  B )  ->  B  e.  ( T  \  { A } ) )
20 ineq2 3808 . . . . . . . 8  |-  ( v  =  B  ->  ( A  i^i  v )  =  ( A  i^i  B
) )
2120eqeq1d 2624 . . . . . . 7  |-  ( v  =  B  ->  (
( A  i^i  v
)  =  (/)  <->  ( A  i^i  B )  =  (/) ) )
2221rspccv 3306 . . . . . 6  |-  ( A. v  e.  ( T  \  { A } ) ( A  i^i  v
)  =  (/)  ->  ( B  e.  ( T  \  { A } )  ->  ( A  i^i  B )  =  (/) ) )
2315, 19, 22syl2im 40 . . . . 5  |-  ( ( T  e.  ( S `
 U )  /\  A  e.  T )  ->  ( ( B  e.  T  /\  A  =/= 
B )  ->  ( A  i^i  B )  =  (/) ) )
2423expd 452 . . . 4  |-  ( ( T  e.  ( S `
 U )  /\  A  e.  T )  ->  ( B  e.  T  ->  ( A  =/=  B  ->  ( A  i^i  B
)  =  (/) ) ) )
25243impia 1261 . . 3  |-  ( ( T  e.  ( S `
 U )  /\  A  e.  T  /\  B  e.  T )  ->  ( A  =/=  B  ->  ( A  i^i  B
)  =  (/) ) )
261, 25syl5bir 233 . 2  |-  ( ( T  e.  ( S `
 U )  /\  A  e.  T  /\  B  e.  T )  ->  ( -.  A  =  B  ->  ( A  i^i  B )  =  (/) ) )
2726orrd 393 1  |-  ( ( T  e.  ( S `
 U )  /\  A  e.  T  /\  B  e.  T )  ->  ( A  =  B  \/  ( A  i^i  B )  =  (/) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   {crab 2916    \ cdif 3571    i^i cin 3573    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   {csn 4177   U.cuni 4436    |-> cmpt 4729   `'ccnv 5113    |` cres 5116   "cima 5117   ` cfv 5888  (class class class)co 6650   ↾t crest 16081   Homeochmeo 21556
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653
This theorem is referenced by:  cvmscld  31255  cvmsss2  31256  cvmseu  31258
  Copyright terms: Public domain W3C validator