Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvrfval Structured version   Visualization version   Unicode version

Theorem cvrfval 34555
Description: Value of covers relation "is covered by". (Contributed by NM, 18-Sep-2011.)
Hypotheses
Ref Expression
cvrfval.b  |-  B  =  ( Base `  K
)
cvrfval.s  |-  .<  =  ( lt `  K )
cvrfval.c  |-  C  =  (  <o  `  K )
Assertion
Ref Expression
cvrfval  |-  ( K  e.  A  ->  C  =  { <. x ,  y
>.  |  ( (
x  e.  B  /\  y  e.  B )  /\  x  .<  y  /\  -.  E. z  e.  B  ( x  .<  z  /\  z  .<  y ) ) } )
Distinct variable groups:    x, y,
z, B    x, K, y, z
Allowed substitution hints:    A( x, y, z)    C( x, y, z)    .< ( x, y, z)

Proof of Theorem cvrfval
Dummy variable  p is distinct from all other variables.
StepHypRef Expression
1 elex 3212 . 2  |-  ( K  e.  A  ->  K  e.  _V )
2 cvrfval.c . . 3  |-  C  =  (  <o  `  K )
3 fveq2 6191 . . . . . . . . 9  |-  ( p  =  K  ->  ( Base `  p )  =  ( Base `  K
) )
4 cvrfval.b . . . . . . . . 9  |-  B  =  ( Base `  K
)
53, 4syl6eqr 2674 . . . . . . . 8  |-  ( p  =  K  ->  ( Base `  p )  =  B )
65eleq2d 2687 . . . . . . 7  |-  ( p  =  K  ->  (
x  e.  ( Base `  p )  <->  x  e.  B ) )
75eleq2d 2687 . . . . . . 7  |-  ( p  =  K  ->  (
y  e.  ( Base `  p )  <->  y  e.  B ) )
86, 7anbi12d 747 . . . . . 6  |-  ( p  =  K  ->  (
( x  e.  (
Base `  p )  /\  y  e.  ( Base `  p ) )  <-> 
( x  e.  B  /\  y  e.  B
) ) )
9 fveq2 6191 . . . . . . . 8  |-  ( p  =  K  ->  ( lt `  p )  =  ( lt `  K
) )
10 cvrfval.s . . . . . . . 8  |-  .<  =  ( lt `  K )
119, 10syl6eqr 2674 . . . . . . 7  |-  ( p  =  K  ->  ( lt `  p )  = 
.<  )
1211breqd 4664 . . . . . 6  |-  ( p  =  K  ->  (
x ( lt `  p ) y  <->  x  .<  y ) )
1311breqd 4664 . . . . . . . . 9  |-  ( p  =  K  ->  (
x ( lt `  p ) z  <->  x  .<  z ) )
1411breqd 4664 . . . . . . . . 9  |-  ( p  =  K  ->  (
z ( lt `  p ) y  <->  z  .<  y ) )
1513, 14anbi12d 747 . . . . . . . 8  |-  ( p  =  K  ->  (
( x ( lt
`  p ) z  /\  z ( lt
`  p ) y )  <->  ( x  .<  z  /\  z  .<  y
) ) )
165, 15rexeqbidv 3153 . . . . . . 7  |-  ( p  =  K  ->  ( E. z  e.  ( Base `  p ) ( x ( lt `  p ) z  /\  z ( lt `  p ) y )  <->  E. z  e.  B  ( x  .<  z  /\  z  .<  y ) ) )
1716notbid 308 . . . . . 6  |-  ( p  =  K  ->  ( -.  E. z  e.  (
Base `  p )
( x ( lt
`  p ) z  /\  z ( lt
`  p ) y )  <->  -.  E. z  e.  B  ( x  .<  z  /\  z  .< 
y ) ) )
188, 12, 173anbi123d 1399 . . . . 5  |-  ( p  =  K  ->  (
( ( x  e.  ( Base `  p
)  /\  y  e.  ( Base `  p )
)  /\  x ( lt `  p ) y  /\  -.  E. z  e.  ( Base `  p
) ( x ( lt `  p ) z  /\  z ( lt `  p ) y ) )  <->  ( (
x  e.  B  /\  y  e.  B )  /\  x  .<  y  /\  -.  E. z  e.  B  ( x  .<  z  /\  z  .<  y ) ) ) )
1918opabbidv 4716 . . . 4  |-  ( p  =  K  ->  { <. x ,  y >.  |  ( ( x  e.  (
Base `  p )  /\  y  e.  ( Base `  p ) )  /\  x ( lt
`  p ) y  /\  -.  E. z  e.  ( Base `  p
) ( x ( lt `  p ) z  /\  z ( lt `  p ) y ) ) }  =  { <. x ,  y >.  |  ( ( x  e.  B  /\  y  e.  B
)  /\  x  .<  y  /\  -.  E. z  e.  B  ( x  .<  z  /\  z  .< 
y ) ) } )
20 df-covers 34553 . . . 4  |-  <o  =  ( p  e.  _V  |->  {
<. x ,  y >.  |  ( ( x  e.  ( Base `  p
)  /\  y  e.  ( Base `  p )
)  /\  x ( lt `  p ) y  /\  -.  E. z  e.  ( Base `  p
) ( x ( lt `  p ) z  /\  z ( lt `  p ) y ) ) } )
21 3anass 1042 . . . . . 6  |-  ( ( ( x  e.  B  /\  y  e.  B
)  /\  x  .<  y  /\  -.  E. z  e.  B  ( x  .<  z  /\  z  .< 
y ) )  <->  ( (
x  e.  B  /\  y  e.  B )  /\  ( x  .<  y  /\  -.  E. z  e.  B  ( x  .<  z  /\  z  .<  y
) ) ) )
2221opabbii 4717 . . . . 5  |-  { <. x ,  y >.  |  ( ( x  e.  B  /\  y  e.  B
)  /\  x  .<  y  /\  -.  E. z  e.  B  ( x  .<  z  /\  z  .< 
y ) ) }  =  { <. x ,  y >.  |  ( ( x  e.  B  /\  y  e.  B
)  /\  ( x  .<  y  /\  -.  E. z  e.  B  (
x  .<  z  /\  z  .<  y ) ) ) }
23 fvex 6201 . . . . . . . 8  |-  ( Base `  K )  e.  _V
244, 23eqeltri 2697 . . . . . . 7  |-  B  e. 
_V
2524, 24xpex 6962 . . . . . 6  |-  ( B  X.  B )  e. 
_V
26 opabssxp 5193 . . . . . 6  |-  { <. x ,  y >.  |  ( ( x  e.  B  /\  y  e.  B
)  /\  ( x  .<  y  /\  -.  E. z  e.  B  (
x  .<  z  /\  z  .<  y ) ) ) }  C_  ( B  X.  B )
2725, 26ssexi 4803 . . . . 5  |-  { <. x ,  y >.  |  ( ( x  e.  B  /\  y  e.  B
)  /\  ( x  .<  y  /\  -.  E. z  e.  B  (
x  .<  z  /\  z  .<  y ) ) ) }  e.  _V
2822, 27eqeltri 2697 . . . 4  |-  { <. x ,  y >.  |  ( ( x  e.  B  /\  y  e.  B
)  /\  x  .<  y  /\  -.  E. z  e.  B  ( x  .<  z  /\  z  .< 
y ) ) }  e.  _V
2919, 20, 28fvmpt 6282 . . 3  |-  ( K  e.  _V  ->  (  <o  `  K )  =  { <. x ,  y
>.  |  ( (
x  e.  B  /\  y  e.  B )  /\  x  .<  y  /\  -.  E. z  e.  B  ( x  .<  z  /\  z  .<  y ) ) } )
302, 29syl5eq 2668 . 2  |-  ( K  e.  _V  ->  C  =  { <. x ,  y
>.  |  ( (
x  e.  B  /\  y  e.  B )  /\  x  .<  y  /\  -.  E. z  e.  B  ( x  .<  z  /\  z  .<  y ) ) } )
311, 30syl 17 1  |-  ( K  e.  A  ->  C  =  { <. x ,  y
>.  |  ( (
x  e.  B  /\  y  e.  B )  /\  x  .<  y  /\  -.  E. z  e.  B  ( x  .<  z  /\  z  .<  y ) ) } )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   E.wrex 2913   _Vcvv 3200   class class class wbr 4653   {copab 4712    X. cxp 5112   ` cfv 5888   Basecbs 15857   ltcplt 16941    <o ccvr 34549
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-covers 34553
This theorem is referenced by:  cvrval  34556
  Copyright terms: Public domain W3C validator