MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cxpval Structured version   Visualization version   Unicode version

Theorem cxpval 24410
Description: Value of the complex power function. (Contributed by Mario Carneiro, 2-Aug-2014.)
Assertion
Ref Expression
cxpval  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  ^c  B )  =  if ( A  =  0 ,  if ( B  =  0 ,  1 ,  0 ) ,  ( exp `  ( B  x.  ( log `  A ) ) ) ) )

Proof of Theorem cxpval
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 473 . . . 4  |-  ( ( x  =  A  /\  y  =  B )  ->  x  =  A )
21eqeq1d 2624 . . 3  |-  ( ( x  =  A  /\  y  =  B )  ->  ( x  =  0  <-> 
A  =  0 ) )
3 simpr 477 . . . . 5  |-  ( ( x  =  A  /\  y  =  B )  ->  y  =  B )
43eqeq1d 2624 . . . 4  |-  ( ( x  =  A  /\  y  =  B )  ->  ( y  =  0  <-> 
B  =  0 ) )
54ifbid 4108 . . 3  |-  ( ( x  =  A  /\  y  =  B )  ->  if ( y  =  0 ,  1 ,  0 )  =  if ( B  =  0 ,  1 ,  0 ) )
61fveq2d 6195 . . . . 5  |-  ( ( x  =  A  /\  y  =  B )  ->  ( log `  x
)  =  ( log `  A ) )
73, 6oveq12d 6668 . . . 4  |-  ( ( x  =  A  /\  y  =  B )  ->  ( y  x.  ( log `  x ) )  =  ( B  x.  ( log `  A ) ) )
87fveq2d 6195 . . 3  |-  ( ( x  =  A  /\  y  =  B )  ->  ( exp `  (
y  x.  ( log `  x ) ) )  =  ( exp `  ( B  x.  ( log `  A ) ) ) )
92, 5, 8ifbieq12d 4113 . 2  |-  ( ( x  =  A  /\  y  =  B )  ->  if ( x  =  0 ,  if ( y  =  0 ,  1 ,  0 ) ,  ( exp `  (
y  x.  ( log `  x ) ) ) )  =  if ( A  =  0 ,  if ( B  =  0 ,  1 ,  0 ) ,  ( exp `  ( B  x.  ( log `  A
) ) ) ) )
10 df-cxp 24304 . 2  |-  ^c 
=  ( x  e.  CC ,  y  e.  CC  |->  if ( x  =  0 ,  if ( y  =  0 ,  1 ,  0 ) ,  ( exp `  ( y  x.  ( log `  x ) ) ) ) )
11 ax-1cn 9994 . . . . 5  |-  1  e.  CC
12 0cn 10032 . . . . 5  |-  0  e.  CC
1311, 12keepel 4155 . . . 4  |-  if ( B  =  0 ,  1 ,  0 )  e.  CC
1413elexi 3213 . . 3  |-  if ( B  =  0 ,  1 ,  0 )  e.  _V
15 fvex 6201 . . 3  |-  ( exp `  ( B  x.  ( log `  A ) ) )  e.  _V
1614, 15ifex 4156 . 2  |-  if ( A  =  0 ,  if ( B  =  0 ,  1 ,  0 ) ,  ( exp `  ( B  x.  ( log `  A
) ) ) )  e.  _V
179, 10, 16ovmpt2a 6791 1  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  ^c  B )  =  if ( A  =  0 ,  if ( B  =  0 ,  1 ,  0 ) ,  ( exp `  ( B  x.  ( log `  A ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   ifcif 4086   ` cfv 5888  (class class class)co 6650   CCcc 9934   0cc0 9936   1c1 9937    x. cmul 9941   expce 14792   logclog 24301    ^c ccxp 24302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-mulcl 9998  ax-i2m1 10004
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-cxp 24304
This theorem is referenced by:  cxpef  24411  0cxp  24412  cxpexp  24414  cxpcl  24420  recxpcl  24421
  Copyright terms: Public domain W3C validator