MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0cxp Structured version   Visualization version   Unicode version

Theorem 0cxp 24412
Description: Value of the complex power function when the first argument is zero. (Contributed by Mario Carneiro, 2-Aug-2014.)
Assertion
Ref Expression
0cxp  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( 0  ^c  A )  =  0 )

Proof of Theorem 0cxp
StepHypRef Expression
1 0cn 10032 . . . 4  |-  0  e.  CC
2 cxpval 24410 . . . 4  |-  ( ( 0  e.  CC  /\  A  e.  CC )  ->  ( 0  ^c  A )  =  if ( 0  =  0 ,  if ( A  =  0 ,  1 ,  0 ) ,  ( exp `  ( A  x.  ( log `  0 ) ) ) ) )
31, 2mpan 706 . . 3  |-  ( A  e.  CC  ->  (
0  ^c  A )  =  if ( 0  =  0 ,  if ( A  =  0 ,  1 ,  0 ) ,  ( exp `  ( A  x.  ( log `  0
) ) ) ) )
4 eqid 2622 . . . 4  |-  0  =  0
54iftruei 4093 . . 3  |-  if ( 0  =  0 ,  if ( A  =  0 ,  1 ,  0 ) ,  ( exp `  ( A  x.  ( log `  0
) ) ) )  =  if ( A  =  0 ,  1 ,  0 )
63, 5syl6eq 2672 . 2  |-  ( A  e.  CC  ->  (
0  ^c  A )  =  if ( A  =  0 ,  1 ,  0 ) )
7 ifnefalse 4098 . 2  |-  ( A  =/=  0  ->  if ( A  =  0 ,  1 ,  0 )  =  0 )
86, 7sylan9eq 2676 1  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( 0  ^c  A )  =  0 )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   ifcif 4086   ` cfv 5888  (class class class)co 6650   CCcc 9934   0cc0 9936   1c1 9937    x. cmul 9941   expce 14792   logclog 24301    ^c ccxp 24302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-mulcl 9998  ax-i2m1 10004
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-cxp 24304
This theorem is referenced by:  cxpexp  24414  cxpeq0  24424  cxpge0  24429  mulcxplem  24430  cxpmul2  24435  cxple2  24443  cxpsqrt  24449  0cxpd  24456  abscxpbnd  24494
  Copyright terms: Public domain W3C validator