MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logccv Structured version   Visualization version   Unicode version

Theorem logccv 24409
Description: The natural logarithm function on the reals is a strictly concave function. (Contributed by Mario Carneiro, 20-Jun-2015.)
Assertion
Ref Expression
logccv  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  (
( T  x.  ( log `  A ) )  +  ( ( 1  -  T )  x.  ( log `  B
) ) )  < 
( log `  (
( T  x.  A
)  +  ( ( 1  -  T )  x.  B ) ) ) )

Proof of Theorem logccv
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl1 1064 . . . . 5  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  A  e.  RR+ )
21rpred 11872 . . . 4  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  A  e.  RR )
3 simpl2 1065 . . . . 5  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  B  e.  RR+ )
43rpred 11872 . . . 4  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  B  e.  RR )
5 simpl3 1066 . . . 4  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  A  <  B )
61rpgt0d 11875 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  0  <  A )
7 ltpnf 11954 . . . . . . . . . . . 12  |-  ( B  e.  RR  ->  B  < +oo )
84, 7syl 17 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  B  < +oo )
9 0xr 10086 . . . . . . . . . . . 12  |-  0  e.  RR*
10 pnfxr 10092 . . . . . . . . . . . 12  |- +oo  e.  RR*
11 iccssioo 12242 . . . . . . . . . . . 12  |-  ( ( ( 0  e.  RR*  /\ +oo  e.  RR* )  /\  (
0  <  A  /\  B  < +oo ) )  -> 
( A [,] B
)  C_  ( 0 (,) +oo ) )
129, 10, 11mpanl12 718 . . . . . . . . . . 11  |-  ( ( 0  <  A  /\  B  < +oo )  ->  ( A [,] B )  C_  ( 0 (,) +oo ) )
136, 8, 12syl2anc 693 . . . . . . . . . 10  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  ( A [,] B )  C_  ( 0 (,) +oo ) )
14 ioorp 12251 . . . . . . . . . 10  |-  ( 0 (,) +oo )  = 
RR+
1513, 14syl6sseq 3651 . . . . . . . . 9  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  ( A [,] B )  C_  RR+ )
1615sselda 3603 . . . . . . . 8  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  /\  x  e.  ( A [,] B
) )  ->  x  e.  RR+ )
1716relogcld 24369 . . . . . . 7  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  /\  x  e.  ( A [,] B
) )  ->  ( log `  x )  e.  RR )
1817renegcld 10457 . . . . . 6  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  /\  x  e.  ( A [,] B
) )  ->  -u ( log `  x )  e.  RR )
19 eqid 2622 . . . . . 6  |-  ( x  e.  ( A [,] B )  |->  -u ( log `  x ) )  =  ( x  e.  ( A [,] B
)  |->  -u ( log `  x
) )
2018, 19fmptd 6385 . . . . 5  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  (
x  e.  ( A [,] B )  |->  -u ( log `  x ) ) : ( A [,] B ) --> RR )
21 ax-resscn 9993 . . . . . 6  |-  RR  C_  CC
2215resabs1d 5428 . . . . . . . 8  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  (
( log  |`  RR+ )  |`  ( A [,] B
) )  =  ( log  |`  ( A [,] B ) ) )
23 ssid 3624 . . . . . . . . . . 11  |-  CC  C_  CC
24 cncfss 22702 . . . . . . . . . . 11  |-  ( ( RR  C_  CC  /\  CC  C_  CC )  ->  ( RR+ -cn-> RR )  C_  ( RR+ -cn-> CC ) )
2521, 23, 24mp2an 708 . . . . . . . . . 10  |-  ( RR+ -cn-> RR )  C_  ( RR+ -cn-> CC )
26 relogcn 24384 . . . . . . . . . 10  |-  ( log  |`  RR+ )  e.  (
RR+ -cn-> RR )
2725, 26sselii 3600 . . . . . . . . 9  |-  ( log  |`  RR+ )  e.  (
RR+ -cn-> CC )
28 rescncf 22700 . . . . . . . . 9  |-  ( ( A [,] B ) 
C_  RR+  ->  ( ( log  |`  RR+ )  e.  (
RR+ -cn-> CC )  ->  (
( log  |`  RR+ )  |`  ( A [,] B
) )  e.  ( ( A [,] B
) -cn-> CC ) ) )
2915, 27, 28mpisyl 21 . . . . . . . 8  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  (
( log  |`  RR+ )  |`  ( A [,] B
) )  e.  ( ( A [,] B
) -cn-> CC ) )
3022, 29eqeltrrd 2702 . . . . . . 7  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  ( log  |`  ( A [,] B ) )  e.  ( ( A [,] B ) -cn-> CC ) )
31 fvres 6207 . . . . . . . . . . 11  |-  ( x  e.  ( A [,] B )  ->  (
( log  |`  ( A [,] B ) ) `
 x )  =  ( log `  x
) )
3231negeqd 10275 . . . . . . . . . 10  |-  ( x  e.  ( A [,] B )  ->  -u (
( log  |`  ( A [,] B ) ) `
 x )  = 
-u ( log `  x
) )
3332mpteq2ia 4740 . . . . . . . . 9  |-  ( x  e.  ( A [,] B )  |->  -u (
( log  |`  ( A [,] B ) ) `
 x ) )  =  ( x  e.  ( A [,] B
)  |->  -u ( log `  x
) )
3433eqcomi 2631 . . . . . . . 8  |-  ( x  e.  ( A [,] B )  |->  -u ( log `  x ) )  =  ( x  e.  ( A [,] B
)  |->  -u ( ( log  |`  ( A [,] B
) ) `  x
) )
3534negfcncf 22722 . . . . . . 7  |-  ( ( log  |`  ( A [,] B ) )  e.  ( ( A [,] B ) -cn-> CC )  ->  ( x  e.  ( A [,] B
)  |->  -u ( log `  x
) )  e.  ( ( A [,] B
) -cn-> CC ) )
3630, 35syl 17 . . . . . 6  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  (
x  e.  ( A [,] B )  |->  -u ( log `  x ) )  e.  ( ( A [,] B )
-cn-> CC ) )
37 cncffvrn 22701 . . . . . 6  |-  ( ( RR  C_  CC  /\  (
x  e.  ( A [,] B )  |->  -u ( log `  x ) )  e.  ( ( A [,] B )
-cn-> CC ) )  -> 
( ( x  e.  ( A [,] B
)  |->  -u ( log `  x
) )  e.  ( ( A [,] B
) -cn-> RR )  <->  ( x  e.  ( A [,] B
)  |->  -u ( log `  x
) ) : ( A [,] B ) --> RR ) )
3821, 36, 37sylancr 695 . . . . 5  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  (
( x  e.  ( A [,] B ) 
|->  -u ( log `  x
) )  e.  ( ( A [,] B
) -cn-> RR )  <->  ( x  e.  ( A [,] B
)  |->  -u ( log `  x
) ) : ( A [,] B ) --> RR ) )
3920, 38mpbird 247 . . . 4  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  (
x  e.  ( A [,] B )  |->  -u ( log `  x ) )  e.  ( ( A [,] B )
-cn-> RR ) )
40 ioossre 12235 . . . . . . . 8  |-  ( A (,) B )  C_  RR
41 ltso 10118 . . . . . . . 8  |-  <  Or  RR
42 soss 5053 . . . . . . . 8  |-  ( ( A (,) B ) 
C_  RR  ->  (  < 
Or  RR  ->  <  Or  ( A (,) B ) ) )
4340, 41, 42mp2 9 . . . . . . 7  |-  <  Or  ( A (,) B )
4443a1i 11 . . . . . 6  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  <  Or  ( A (,) B
) )
45 ioossicc 12259 . . . . . . . . . . . . . 14  |-  ( A (,) B )  C_  ( A [,] B )
4645, 15syl5ss 3614 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  ( A (,) B )  C_  RR+ )
4746sselda 3603 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  /\  x  e.  ( A (,) B
) )  ->  x  e.  RR+ )
4847rprecred 11883 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  /\  x  e.  ( A (,) B
) )  ->  (
1  /  x )  e.  RR )
4948renegcld 10457 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  /\  x  e.  ( A (,) B
) )  ->  -u (
1  /  x )  e.  RR )
50 eqid 2622 . . . . . . . . . 10  |-  ( x  e.  ( A (,) B )  |->  -u (
1  /  x ) )  =  ( x  e.  ( A (,) B )  |->  -u (
1  /  x ) )
5149, 50fmptd 6385 . . . . . . . . 9  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  (
x  e.  ( A (,) B )  |->  -u ( 1  /  x
) ) : ( A (,) B ) --> RR )
52 frn 6053 . . . . . . . . 9  |-  ( ( x  e.  ( A (,) B )  |->  -u ( 1  /  x
) ) : ( A (,) B ) --> RR  ->  ran  ( x  e.  ( A (,) B )  |->  -u (
1  /  x ) )  C_  RR )
5351, 52syl 17 . . . . . . . 8  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  ran  ( x  e.  ( A (,) B )  |->  -u ( 1  /  x
) )  C_  RR )
54 soss 5053 . . . . . . . 8  |-  ( ran  ( x  e.  ( A (,) B ) 
|->  -u ( 1  /  x ) )  C_  RR  ->  (  <  Or  RR  ->  <  Or  ran  ( x  e.  ( A (,) B )  |->  -u ( 1  /  x
) ) ) )
5553, 41, 54mpisyl 21 . . . . . . 7  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  <  Or 
ran  ( x  e.  ( A (,) B
)  |->  -u ( 1  /  x ) ) )
56 sopo 5052 . . . . . . 7  |-  (  < 
Or  ran  ( x  e.  ( A (,) B
)  |->  -u ( 1  /  x ) )  ->  <  Po  ran  ( x  e.  ( A (,) B )  |->  -u (
1  /  x ) ) )
5755, 56syl 17 . . . . . 6  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  <  Po 
ran  ( x  e.  ( A (,) B
)  |->  -u ( 1  /  x ) ) )
58 negex 10279 . . . . . . . . 9  |-  -u (
1  /  x )  e.  _V
5958, 50fnmpti 6022 . . . . . . . 8  |-  ( x  e.  ( A (,) B )  |->  -u (
1  /  x ) )  Fn  ( A (,) B )
60 dffn4 6121 . . . . . . . 8  |-  ( ( x  e.  ( A (,) B )  |->  -u ( 1  /  x
) )  Fn  ( A (,) B )  <->  ( x  e.  ( A (,) B
)  |->  -u ( 1  /  x ) ) : ( A (,) B
) -onto-> ran  ( x  e.  ( A (,) B
)  |->  -u ( 1  /  x ) ) )
6159, 60mpbi 220 . . . . . . 7  |-  ( x  e.  ( A (,) B )  |->  -u (
1  /  x ) ) : ( A (,) B ) -onto-> ran  ( x  e.  ( A (,) B ) 
|->  -u ( 1  /  x ) )
6261a1i 11 . . . . . 6  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  (
x  e.  ( A (,) B )  |->  -u ( 1  /  x
) ) : ( A (,) B )
-onto->
ran  ( x  e.  ( A (,) B
)  |->  -u ( 1  /  x ) ) )
6346sselda 3603 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  /\  z  e.  ( A (,) B
) )  ->  z  e.  RR+ )
6463adantrl 752 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  /\  ( y  e.  ( A (,) B )  /\  z  e.  ( A (,) B
) ) )  -> 
z  e.  RR+ )
6564rprecred 11883 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  /\  ( y  e.  ( A (,) B )  /\  z  e.  ( A (,) B
) ) )  -> 
( 1  /  z
)  e.  RR )
6646sselda 3603 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  /\  y  e.  ( A (,) B
) )  ->  y  e.  RR+ )
6766adantrr 753 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  /\  ( y  e.  ( A (,) B )  /\  z  e.  ( A (,) B
) ) )  -> 
y  e.  RR+ )
6867rprecred 11883 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  /\  ( y  e.  ( A (,) B )  /\  z  e.  ( A (,) B
) ) )  -> 
( 1  /  y
)  e.  RR )
6965, 68ltnegd 10605 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  /\  ( y  e.  ( A (,) B )  /\  z  e.  ( A (,) B
) ) )  -> 
( ( 1  / 
z )  <  (
1  /  y )  <->  -u ( 1  /  y
)  <  -u ( 1  /  z ) ) )
7067, 64ltrecd 11890 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  /\  ( y  e.  ( A (,) B )  /\  z  e.  ( A (,) B
) ) )  -> 
( y  <  z  <->  ( 1  /  z )  <  ( 1  / 
y ) ) )
71 oveq2 6658 . . . . . . . . . . . . 13  |-  ( x  =  y  ->  (
1  /  x )  =  ( 1  / 
y ) )
7271negeqd 10275 . . . . . . . . . . . 12  |-  ( x  =  y  ->  -u (
1  /  x )  =  -u ( 1  / 
y ) )
73 negex 10279 . . . . . . . . . . . 12  |-  -u (
1  /  y )  e.  _V
7472, 50, 73fvmpt 6282 . . . . . . . . . . 11  |-  ( y  e.  ( A (,) B )  ->  (
( x  e.  ( A (,) B ) 
|->  -u ( 1  /  x ) ) `  y )  =  -u ( 1  /  y
) )
75 oveq2 6658 . . . . . . . . . . . . 13  |-  ( x  =  z  ->  (
1  /  x )  =  ( 1  / 
z ) )
7675negeqd 10275 . . . . . . . . . . . 12  |-  ( x  =  z  ->  -u (
1  /  x )  =  -u ( 1  / 
z ) )
77 negex 10279 . . . . . . . . . . . 12  |-  -u (
1  /  z )  e.  _V
7876, 50, 77fvmpt 6282 . . . . . . . . . . 11  |-  ( z  e.  ( A (,) B )  ->  (
( x  e.  ( A (,) B ) 
|->  -u ( 1  /  x ) ) `  z )  =  -u ( 1  /  z
) )
7974, 78breqan12d 4669 . . . . . . . . . 10  |-  ( ( y  e.  ( A (,) B )  /\  z  e.  ( A (,) B ) )  -> 
( ( ( x  e.  ( A (,) B )  |->  -u (
1  /  x ) ) `  y )  <  ( ( x  e.  ( A (,) B )  |->  -u (
1  /  x ) ) `  z )  <->  -u ( 1  /  y
)  <  -u ( 1  /  z ) ) )
8079adantl 482 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  /\  ( y  e.  ( A (,) B )  /\  z  e.  ( A (,) B
) ) )  -> 
( ( ( x  e.  ( A (,) B )  |->  -u (
1  /  x ) ) `  y )  <  ( ( x  e.  ( A (,) B )  |->  -u (
1  /  x ) ) `  z )  <->  -u ( 1  /  y
)  <  -u ( 1  /  z ) ) )
8169, 70, 803bitr4d 300 . . . . . . . 8  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  /\  ( y  e.  ( A (,) B )  /\  z  e.  ( A (,) B
) ) )  -> 
( y  <  z  <->  ( ( x  e.  ( A (,) B ) 
|->  -u ( 1  /  x ) ) `  y )  <  (
( x  e.  ( A (,) B ) 
|->  -u ( 1  /  x ) ) `  z ) ) )
8281biimpd 219 . . . . . . 7  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  /\  ( y  e.  ( A (,) B )  /\  z  e.  ( A (,) B
) ) )  -> 
( y  <  z  ->  ( ( x  e.  ( A (,) B
)  |->  -u ( 1  /  x ) ) `  y )  <  (
( x  e.  ( A (,) B ) 
|->  -u ( 1  /  x ) ) `  z ) ) )
8382ralrimivva 2971 . . . . . 6  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  A. y  e.  ( A (,) B
) A. z  e.  ( A (,) B
) ( y  < 
z  ->  ( (
x  e.  ( A (,) B )  |->  -u ( 1  /  x
) ) `  y
)  <  ( (
x  e.  ( A (,) B )  |->  -u ( 1  /  x
) ) `  z
) ) )
84 soisoi 6578 . . . . . 6  |-  ( ( (  <  Or  ( A (,) B )  /\  <  Po  ran  ( x  e.  ( A (,) B )  |->  -u (
1  /  x ) ) )  /\  (
( x  e.  ( A (,) B ) 
|->  -u ( 1  /  x ) ) : ( A (,) B
) -onto-> ran  ( x  e.  ( A (,) B
)  |->  -u ( 1  /  x ) )  /\  A. y  e.  ( A (,) B ) A. z  e.  ( A (,) B ) ( y  <  z  ->  (
( x  e.  ( A (,) B ) 
|->  -u ( 1  /  x ) ) `  y )  <  (
( x  e.  ( A (,) B ) 
|->  -u ( 1  /  x ) ) `  z ) ) ) )  ->  ( x  e.  ( A (,) B
)  |->  -u ( 1  /  x ) )  Isom  <  ,  <  ( ( A (,) B ) ,  ran  ( x  e.  ( A (,) B
)  |->  -u ( 1  /  x ) ) ) )
8544, 57, 62, 83, 84syl22anc 1327 . . . . 5  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  (
x  e.  ( A (,) B )  |->  -u ( 1  /  x
) )  Isom  <  ,  <  ( ( A (,) B ) ,  ran  ( x  e.  ( A (,) B
)  |->  -u ( 1  /  x ) ) ) )
86 reelprrecn 10028 . . . . . . . 8  |-  RR  e.  { RR ,  CC }
8786a1i 11 . . . . . . 7  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  RR  e.  { RR ,  CC } )
88 relogcl 24322 . . . . . . . . . 10  |-  ( x  e.  RR+  ->  ( log `  x )  e.  RR )
8988adantl 482 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  /\  x  e.  RR+ )  ->  ( log `  x )  e.  RR )
9089recnd 10068 . . . . . . . 8  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  /\  x  e.  RR+ )  ->  ( log `  x )  e.  CC )
9190negcld 10379 . . . . . . 7  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  /\  x  e.  RR+ )  ->  -u ( log `  x )  e.  CC )
9258a1i 11 . . . . . . 7  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  /\  x  e.  RR+ )  ->  -u (
1  /  x )  e.  _V )
93 ovexd 6680 . . . . . . . 8  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  /\  x  e.  RR+ )  ->  ( 1  /  x )  e. 
_V )
94 dvrelog 24383 . . . . . . . . 9  |-  ( RR 
_D  ( log  |`  RR+ )
)  =  ( x  e.  RR+  |->  ( 1  /  x ) )
95 relogf1o 24313 . . . . . . . . . . . . 13  |-  ( log  |`  RR+ ) : RR+ -1-1-onto-> RR
96 f1of 6137 . . . . . . . . . . . . 13  |-  ( ( log  |`  RR+ ) :
RR+
-1-1-onto-> RR  ->  ( log  |`  RR+ ) : RR+ --> RR )
9795, 96mp1i 13 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  ( log  |`  RR+ ) : RR+ --> RR )
9897feqmptd 6249 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  ( log  |`  RR+ )  =  ( x  e.  RR+  |->  ( ( log  |`  RR+ ) `  x ) ) )
99 fvres 6207 . . . . . . . . . . . 12  |-  ( x  e.  RR+  ->  ( ( log  |`  RR+ ) `  x )  =  ( log `  x ) )
10099mpteq2ia 4740 . . . . . . . . . . 11  |-  ( x  e.  RR+  |->  ( ( log  |`  RR+ ) `  x ) )  =  ( x  e.  RR+  |->  ( log `  x ) )
10198, 100syl6eq 2672 . . . . . . . . . 10  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  ( log  |`  RR+ )  =  ( x  e.  RR+  |->  ( log `  x ) ) )
102101oveq2d 6666 . . . . . . . . 9  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  ( RR  _D  ( log  |`  RR+ )
)  =  ( RR 
_D  ( x  e.  RR+  |->  ( log `  x
) ) ) )
10394, 102syl5reqr 2671 . . . . . . . 8  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  ( RR  _D  ( x  e.  RR+  |->  ( log `  x
) ) )  =  ( x  e.  RR+  |->  ( 1  /  x
) ) )
10487, 90, 93, 103dvmptneg 23729 . . . . . . 7  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  ( RR  _D  ( x  e.  RR+  |->  -u ( log `  x
) ) )  =  ( x  e.  RR+  |->  -u ( 1  /  x
) ) )
105 eqid 2622 . . . . . . . 8  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
106105tgioo2 22606 . . . . . . 7  |-  ( topGen ` 
ran  (,) )  =  ( ( TopOpen ` fld )t  RR )
107 iccntr 22624 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) )  =  ( A (,) B
) )
1082, 4, 107syl2anc 693 . . . . . . 7  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  (
( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) )  =  ( A (,) B
) )
10987, 91, 92, 104, 15, 106, 105, 108dvmptres2 23725 . . . . . 6  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  ( RR  _D  ( x  e.  ( A [,] B
)  |->  -u ( log `  x
) ) )  =  ( x  e.  ( A (,) B ) 
|->  -u ( 1  /  x ) ) )
110 isoeq1 6567 . . . . . 6  |-  ( ( RR  _D  ( x  e.  ( A [,] B )  |->  -u ( log `  x ) ) )  =  ( x  e.  ( A (,) B )  |->  -u (
1  /  x ) )  ->  ( ( RR  _D  ( x  e.  ( A [,] B
)  |->  -u ( log `  x
) ) )  Isom  <  ,  <  ( ( A (,) B ) ,  ran  ( x  e.  ( A (,) B
)  |->  -u ( 1  /  x ) ) )  <-> 
( x  e.  ( A (,) B ) 
|->  -u ( 1  /  x ) )  Isom  <  ,  <  ( ( A (,) B ) ,  ran  ( x  e.  ( A (,) B
)  |->  -u ( 1  /  x ) ) ) ) )
111109, 110syl 17 . . . . 5  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  (
( RR  _D  (
x  e.  ( A [,] B )  |->  -u ( log `  x ) ) )  Isom  <  ,  <  ( ( A (,) B ) ,  ran  ( x  e.  ( A (,) B
)  |->  -u ( 1  /  x ) ) )  <-> 
( x  e.  ( A (,) B ) 
|->  -u ( 1  /  x ) )  Isom  <  ,  <  ( ( A (,) B ) ,  ran  ( x  e.  ( A (,) B
)  |->  -u ( 1  /  x ) ) ) ) )
11285, 111mpbird 247 . . . 4  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  ( RR  _D  ( x  e.  ( A [,] B
)  |->  -u ( log `  x
) ) )  Isom  <  ,  <  ( ( A (,) B ) ,  ran  ( x  e.  ( A (,) B
)  |->  -u ( 1  /  x ) ) ) )
113 simpr 477 . . . 4  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  T  e.  ( 0 (,) 1
) )
114 eqid 2622 . . . 4  |-  ( ( T  x.  A )  +  ( ( 1  -  T )  x.  B ) )  =  ( ( T  x.  A )  +  ( ( 1  -  T
)  x.  B ) )
1152, 4, 5, 39, 112, 113, 114dvcvx 23783 . . 3  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  (
( x  e.  ( A [,] B ) 
|->  -u ( log `  x
) ) `  (
( T  x.  A
)  +  ( ( 1  -  T )  x.  B ) ) )  <  ( ( T  x.  ( ( x  e.  ( A [,] B )  |->  -u ( log `  x ) ) `  A ) )  +  ( ( 1  -  T )  x.  ( ( x  e.  ( A [,] B )  |->  -u ( log `  x ) ) `
 B ) ) ) )
116 ax-1cn 9994 . . . . . . . 8  |-  1  e.  CC
117 elioore 12205 . . . . . . . . . 10  |-  ( T  e.  ( 0 (,) 1 )  ->  T  e.  RR )
118117adantl 482 . . . . . . . . 9  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  T  e.  RR )
119118recnd 10068 . . . . . . . 8  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  T  e.  CC )
120 nncan 10310 . . . . . . . 8  |-  ( ( 1  e.  CC  /\  T  e.  CC )  ->  ( 1  -  (
1  -  T ) )  =  T )
121116, 119, 120sylancr 695 . . . . . . 7  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  (
1  -  ( 1  -  T ) )  =  T )
122121oveq1d 6665 . . . . . 6  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  (
( 1  -  (
1  -  T ) )  x.  A )  =  ( T  x.  A ) )
123122oveq1d 6665 . . . . 5  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  (
( ( 1  -  ( 1  -  T
) )  x.  A
)  +  ( ( 1  -  T )  x.  B ) )  =  ( ( T  x.  A )  +  ( ( 1  -  T )  x.  B
) ) )
124 ioossicc 12259 . . . . . . . 8  |-  ( 0 (,) 1 )  C_  ( 0 [,] 1
)
125124, 113sseldi 3601 . . . . . . 7  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  T  e.  ( 0 [,] 1
) )
126 iirev 22728 . . . . . . 7  |-  ( T  e.  ( 0 [,] 1 )  ->  (
1  -  T )  e.  ( 0 [,] 1 ) )
127125, 126syl 17 . . . . . 6  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  (
1  -  T )  e.  ( 0 [,] 1 ) )
128 lincmb01cmp 12315 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  ( 1  -  T
)  e.  ( 0 [,] 1 ) )  ->  ( ( ( 1  -  ( 1  -  T ) )  x.  A )  +  ( ( 1  -  T )  x.  B
) )  e.  ( A [,] B ) )
1292, 4, 5, 127, 128syl31anc 1329 . . . . 5  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  (
( ( 1  -  ( 1  -  T
) )  x.  A
)  +  ( ( 1  -  T )  x.  B ) )  e.  ( A [,] B ) )
130123, 129eqeltrrd 2702 . . . 4  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  (
( T  x.  A
)  +  ( ( 1  -  T )  x.  B ) )  e.  ( A [,] B ) )
131 fveq2 6191 . . . . . 6  |-  ( x  =  ( ( T  x.  A )  +  ( ( 1  -  T )  x.  B
) )  ->  ( log `  x )  =  ( log `  (
( T  x.  A
)  +  ( ( 1  -  T )  x.  B ) ) ) )
132131negeqd 10275 . . . . 5  |-  ( x  =  ( ( T  x.  A )  +  ( ( 1  -  T )  x.  B
) )  ->  -u ( log `  x )  = 
-u ( log `  (
( T  x.  A
)  +  ( ( 1  -  T )  x.  B ) ) ) )
133 negex 10279 . . . . 5  |-  -u ( log `  ( ( T  x.  A )  +  ( ( 1  -  T )  x.  B
) ) )  e. 
_V
134132, 19, 133fvmpt 6282 . . . 4  |-  ( ( ( T  x.  A
)  +  ( ( 1  -  T )  x.  B ) )  e.  ( A [,] B )  ->  (
( x  e.  ( A [,] B ) 
|->  -u ( log `  x
) ) `  (
( T  x.  A
)  +  ( ( 1  -  T )  x.  B ) ) )  =  -u ( log `  ( ( T  x.  A )  +  ( ( 1  -  T )  x.  B
) ) ) )
135130, 134syl 17 . . 3  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  (
( x  e.  ( A [,] B ) 
|->  -u ( log `  x
) ) `  (
( T  x.  A
)  +  ( ( 1  -  T )  x.  B ) ) )  =  -u ( log `  ( ( T  x.  A )  +  ( ( 1  -  T )  x.  B
) ) ) )
1361rpxrd 11873 . . . . . . . . 9  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  A  e.  RR* )
1373rpxrd 11873 . . . . . . . . 9  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  B  e.  RR* )
1382, 4, 5ltled 10185 . . . . . . . . 9  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  A  <_  B )
139 lbicc2 12288 . . . . . . . . 9  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  <_  B )  ->  A  e.  ( A [,] B
) )
140136, 137, 138, 139syl3anc 1326 . . . . . . . 8  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  A  e.  ( A [,] B
) )
141 fveq2 6191 . . . . . . . . . 10  |-  ( x  =  A  ->  ( log `  x )  =  ( log `  A
) )
142141negeqd 10275 . . . . . . . . 9  |-  ( x  =  A  ->  -u ( log `  x )  = 
-u ( log `  A
) )
143 negex 10279 . . . . . . . . 9  |-  -u ( log `  A )  e. 
_V
144142, 19, 143fvmpt 6282 . . . . . . . 8  |-  ( A  e.  ( A [,] B )  ->  (
( x  e.  ( A [,] B ) 
|->  -u ( log `  x
) ) `  A
)  =  -u ( log `  A ) )
145140, 144syl 17 . . . . . . 7  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  (
( x  e.  ( A [,] B ) 
|->  -u ( log `  x
) ) `  A
)  =  -u ( log `  A ) )
146145oveq2d 6666 . . . . . 6  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  ( T  x.  ( (
x  e.  ( A [,] B )  |->  -u ( log `  x ) ) `  A ) )  =  ( T  x.  -u ( log `  A
) ) )
1471relogcld 24369 . . . . . . . 8  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  ( log `  A )  e.  RR )
148147recnd 10068 . . . . . . 7  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  ( log `  A )  e.  CC )
149119, 148mulneg2d 10484 . . . . . 6  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  ( T  x.  -u ( log `  A ) )  = 
-u ( T  x.  ( log `  A ) ) )
150146, 149eqtrd 2656 . . . . 5  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  ( T  x.  ( (
x  e.  ( A [,] B )  |->  -u ( log `  x ) ) `  A ) )  =  -u ( T  x.  ( log `  A ) ) )
151 ubicc2 12289 . . . . . . . . 9  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  <_  B )  ->  B  e.  ( A [,] B
) )
152136, 137, 138, 151syl3anc 1326 . . . . . . . 8  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  B  e.  ( A [,] B
) )
153 fveq2 6191 . . . . . . . . . 10  |-  ( x  =  B  ->  ( log `  x )  =  ( log `  B
) )
154153negeqd 10275 . . . . . . . . 9  |-  ( x  =  B  ->  -u ( log `  x )  = 
-u ( log `  B
) )
155 negex 10279 . . . . . . . . 9  |-  -u ( log `  B )  e. 
_V
156154, 19, 155fvmpt 6282 . . . . . . . 8  |-  ( B  e.  ( A [,] B )  ->  (
( x  e.  ( A [,] B ) 
|->  -u ( log `  x
) ) `  B
)  =  -u ( log `  B ) )
157152, 156syl 17 . . . . . . 7  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  (
( x  e.  ( A [,] B ) 
|->  -u ( log `  x
) ) `  B
)  =  -u ( log `  B ) )
158157oveq2d 6666 . . . . . 6  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  (
( 1  -  T
)  x.  ( ( x  e.  ( A [,] B )  |->  -u ( log `  x ) ) `  B ) )  =  ( ( 1  -  T )  x.  -u ( log `  B
) ) )
159 1re 10039 . . . . . . . . 9  |-  1  e.  RR
160 resubcl 10345 . . . . . . . . 9  |-  ( ( 1  e.  RR  /\  T  e.  RR )  ->  ( 1  -  T
)  e.  RR )
161159, 118, 160sylancr 695 . . . . . . . 8  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  (
1  -  T )  e.  RR )
162161recnd 10068 . . . . . . 7  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  (
1  -  T )  e.  CC )
1633relogcld 24369 . . . . . . . 8  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  ( log `  B )  e.  RR )
164163recnd 10068 . . . . . . 7  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  ( log `  B )  e.  CC )
165162, 164mulneg2d 10484 . . . . . 6  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  (
( 1  -  T
)  x.  -u ( log `  B ) )  =  -u ( ( 1  -  T )  x.  ( log `  B
) ) )
166158, 165eqtrd 2656 . . . . 5  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  (
( 1  -  T
)  x.  ( ( x  e.  ( A [,] B )  |->  -u ( log `  x ) ) `  B ) )  =  -u (
( 1  -  T
)  x.  ( log `  B ) ) )
167150, 166oveq12d 6668 . . . 4  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  (
( T  x.  (
( x  e.  ( A [,] B ) 
|->  -u ( log `  x
) ) `  A
) )  +  ( ( 1  -  T
)  x.  ( ( x  e.  ( A [,] B )  |->  -u ( log `  x ) ) `  B ) ) )  =  (
-u ( T  x.  ( log `  A ) )  +  -u (
( 1  -  T
)  x.  ( log `  B ) ) ) )
168118, 147remulcld 10070 . . . . . 6  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  ( T  x.  ( log `  A ) )  e.  RR )
169168recnd 10068 . . . . 5  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  ( T  x.  ( log `  A ) )  e.  CC )
170161, 163remulcld 10070 . . . . . 6  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  (
( 1  -  T
)  x.  ( log `  B ) )  e.  RR )
171170recnd 10068 . . . . 5  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  (
( 1  -  T
)  x.  ( log `  B ) )  e.  CC )
172169, 171negdid 10405 . . . 4  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  -u (
( T  x.  ( log `  A ) )  +  ( ( 1  -  T )  x.  ( log `  B
) ) )  =  ( -u ( T  x.  ( log `  A
) )  +  -u ( ( 1  -  T )  x.  ( log `  B ) ) ) )
173167, 172eqtr4d 2659 . . 3  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  (
( T  x.  (
( x  e.  ( A [,] B ) 
|->  -u ( log `  x
) ) `  A
) )  +  ( ( 1  -  T
)  x.  ( ( x  e.  ( A [,] B )  |->  -u ( log `  x ) ) `  B ) ) )  =  -u ( ( T  x.  ( log `  A ) )  +  ( ( 1  -  T )  x.  ( log `  B
) ) ) )
174115, 135, 1733brtr3d 4684 . 2  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  -u ( log `  ( ( T  x.  A )  +  ( ( 1  -  T )  x.  B
) ) )  <  -u ( ( T  x.  ( log `  A ) )  +  ( ( 1  -  T )  x.  ( log `  B
) ) ) )
175168, 170readdcld 10069 . . 3  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  (
( T  x.  ( log `  A ) )  +  ( ( 1  -  T )  x.  ( log `  B
) ) )  e.  RR )
17615, 130sseldd 3604 . . . 4  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  (
( T  x.  A
)  +  ( ( 1  -  T )  x.  B ) )  e.  RR+ )
177176relogcld 24369 . . 3  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  ( log `  ( ( T  x.  A )  +  ( ( 1  -  T )  x.  B
) ) )  e.  RR )
178175, 177ltnegd 10605 . 2  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  (
( ( T  x.  ( log `  A ) )  +  ( ( 1  -  T )  x.  ( log `  B
) ) )  < 
( log `  (
( T  x.  A
)  +  ( ( 1  -  T )  x.  B ) ) )  <->  -u ( log `  (
( T  x.  A
)  +  ( ( 1  -  T )  x.  B ) ) )  <  -u (
( T  x.  ( log `  A ) )  +  ( ( 1  -  T )  x.  ( log `  B
) ) ) ) )
179174, 178mpbird 247 1  |-  ( ( ( A  e.  RR+  /\  B  e.  RR+  /\  A  <  B )  /\  T  e.  ( 0 (,) 1
) )  ->  (
( T  x.  ( log `  A ) )  +  ( ( 1  -  T )  x.  ( log `  B
) ) )  < 
( log `  (
( T  x.  A
)  +  ( ( 1  -  T )  x.  B ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   _Vcvv 3200    C_ wss 3574   {cpr 4179   class class class wbr 4653    |-> cmpt 4729    Po wpo 5033    Or wor 5034   ran crn 5115    |` cres 5116    Fn wfn 5883   -->wf 5884   -onto->wfo 5886   -1-1-onto->wf1o 5887   ` cfv 5888    Isom wiso 5889  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941   +oocpnf 10071   RR*cxr 10073    < clt 10074    <_ cle 10075    - cmin 10266   -ucneg 10267    / cdiv 10684   RR+crp 11832   (,)cioo 12175   [,]cicc 12178   TopOpenctopn 16082   topGenctg 16098  ℂfldccnfld 19746   intcnt 20821   -cn->ccncf 22679    _D cdv 23627   logclog 24301
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-sin 14800  df-cos 14801  df-pi 14803  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-cmp 21190  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631  df-log 24303
This theorem is referenced by:  amgmlem  24716  amgmwlem  42548
  Copyright terms: Public domain W3C validator