MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  deg1fval Structured version   Visualization version   Unicode version

Theorem deg1fval 23840
Description: Relate univariate polynomial degree to multivariate. (Contributed by Stefan O'Rear, 23-Mar-2015.) (Revised by Mario Carneiro, 7-Oct-2015.)
Hypothesis
Ref Expression
deg1fval.d  |-  D  =  ( deg1  `  R )
Assertion
Ref Expression
deg1fval  |-  D  =  ( 1o mDeg  R )

Proof of Theorem deg1fval
Dummy variable  r is distinct from all other variables.
StepHypRef Expression
1 deg1fval.d . 2  |-  D  =  ( deg1  `  R )
2 oveq2 6658 . . . 4  |-  ( r  =  R  ->  ( 1o mDeg  r )  =  ( 1o mDeg  R ) )
3 df-deg1 23816 . . . 4  |- deg1  =  (
r  e.  _V  |->  ( 1o mDeg  r ) )
4 ovex 6678 . . . 4  |-  ( 1o mDeg  R )  e.  _V
52, 3, 4fvmpt 6282 . . 3  |-  ( R  e.  _V  ->  ( deg1  `  R )  =  ( 1o mDeg  R ) )
6 fvprc 6185 . . . 4  |-  ( -.  R  e.  _V  ->  ( deg1  `  R )  =  (/) )
7 reldmmdeg 23817 . . . . 5  |-  Rel  dom mDeg
87ovprc2 6685 . . . 4  |-  ( -.  R  e.  _V  ->  ( 1o mDeg  R )  =  (/) )
96, 8eqtr4d 2659 . . 3  |-  ( -.  R  e.  _V  ->  ( deg1  `  R )  =  ( 1o mDeg  R ) )
105, 9pm2.61i 176 . 2  |-  ( deg1  `  R
)  =  ( 1o mDeg  R )
111, 10eqtri 2644 1  |-  D  =  ( 1o mDeg  R )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    = wceq 1483    e. wcel 1990   _Vcvv 3200   (/)c0 3915   ` cfv 5888  (class class class)co 6650   1oc1o 7553   mDeg cmdg 23813   deg1 cdg1 23814
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-mdeg 23815  df-deg1 23816
This theorem is referenced by:  deg1xrf  23841  deg1cl  23843  deg1propd  23846  deg1z  23847  deg1nn0cl  23848  deg1ldg  23852  deg1leb  23855  deg1val  23856  deg1addle  23861  deg1vscale  23864  deg1vsca  23865  deg1mulle2  23869  deg1le0  23871
  Copyright terms: Public domain W3C validator