| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df2o2 | Structured version Visualization version Unicode version | ||
| Description: Expanded value of the ordinal number 2. (Contributed by NM, 29-Jan-2004.) |
| Ref | Expression |
|---|---|
| df2o2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df2o3 7573 |
. 2
| |
| 2 | df1o2 7572 |
. . 3
| |
| 3 | 2 | preq2i 4272 |
. 2
|
| 4 | 1, 3 | eqtri 2644 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-v 3202 df-dif 3577 df-un 3579 df-nul 3916 df-sn 4178 df-pr 4180 df-suc 5729 df-1o 7560 df-2o 7561 |
| This theorem is referenced by: 2dom 8029 pw2eng 8066 pwcda1 9016 canthp1lem1 9474 pr0hash2ex 13196 hashpw 13223 znidomb 19910 ssoninhaus 32447 onint1 32448 pw2f1ocnv 37604 df3o3 38323 |
| Copyright terms: Public domain | W3C validator |