MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  znidomb Structured version   Visualization version   Unicode version

Theorem znidomb 19910
Description: The ℤ/nℤ structure is a domain (and hence a field) precisely when  n is prime. (Contributed by Mario Carneiro, 15-Jun-2015.)
Hypothesis
Ref Expression
zntos.y  |-  Y  =  (ℤ/n `  N )
Assertion
Ref Expression
znidomb  |-  ( N  e.  NN  ->  ( Y  e. IDomn  <->  N  e.  Prime ) )

Proof of Theorem znidomb
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 2z 11409 . . . . . 6  |-  2  e.  ZZ
21a1i 11 . . . . 5  |-  ( ( N  e.  NN  /\  Y  e. IDomn )  ->  2  e.  ZZ )
3 nnz 11399 . . . . . 6  |-  ( N  e.  NN  ->  N  e.  ZZ )
43adantr 481 . . . . 5  |-  ( ( N  e.  NN  /\  Y  e. IDomn )  ->  N  e.  ZZ )
5 hash2 13193 . . . . . . 7  |-  ( # `  2o )  =  2
6 isidom 19304 . . . . . . . . . . . 12  |-  ( Y  e. IDomn 
<->  ( Y  e.  CRing  /\  Y  e. Domn ) )
76simprbi 480 . . . . . . . . . . 11  |-  ( Y  e. IDomn  ->  Y  e. Domn )
8 domnnzr 19295 . . . . . . . . . . 11  |-  ( Y  e. Domn  ->  Y  e. NzRing )
97, 8syl 17 . . . . . . . . . 10  |-  ( Y  e. IDomn  ->  Y  e. NzRing )
10 eqid 2622 . . . . . . . . . . . 12  |-  ( Base `  Y )  =  (
Base `  Y )
1110isnzr2 19263 . . . . . . . . . . 11  |-  ( Y  e. NzRing 
<->  ( Y  e.  Ring  /\  2o  ~<_  ( Base `  Y
) ) )
1211simprbi 480 . . . . . . . . . 10  |-  ( Y  e. NzRing  ->  2o  ~<_  ( Base `  Y ) )
139, 12syl 17 . . . . . . . . 9  |-  ( Y  e. IDomn  ->  2o  ~<_  ( Base `  Y ) )
1413adantl 482 . . . . . . . 8  |-  ( ( N  e.  NN  /\  Y  e. IDomn )  ->  2o  ~<_  ( Base `  Y
) )
15 df2o2 7574 . . . . . . . . . 10  |-  2o  =  { (/) ,  { (/) } }
16 prfi 8235 . . . . . . . . . 10  |-  { (/) ,  { (/) } }  e.  Fin
1715, 16eqeltri 2697 . . . . . . . . 9  |-  2o  e.  Fin
18 fvex 6201 . . . . . . . . 9  |-  ( Base `  Y )  e.  _V
19 hashdom 13168 . . . . . . . . 9  |-  ( ( 2o  e.  Fin  /\  ( Base `  Y )  e.  _V )  ->  (
( # `  2o )  <_  ( # `  ( Base `  Y ) )  <-> 
2o  ~<_  ( Base `  Y
) ) )
2017, 18, 19mp2an 708 . . . . . . . 8  |-  ( (
# `  2o )  <_  ( # `  ( Base `  Y ) )  <-> 
2o  ~<_  ( Base `  Y
) )
2114, 20sylibr 224 . . . . . . 7  |-  ( ( N  e.  NN  /\  Y  e. IDomn )  ->  (
# `  2o )  <_  ( # `  ( Base `  Y ) ) )
225, 21syl5eqbrr 4689 . . . . . 6  |-  ( ( N  e.  NN  /\  Y  e. IDomn )  ->  2  <_  ( # `  ( Base `  Y ) ) )
23 zntos.y . . . . . . . 8  |-  Y  =  (ℤ/n `  N )
2423, 10znhash 19907 . . . . . . 7  |-  ( N  e.  NN  ->  ( # `
 ( Base `  Y
) )  =  N )
2524adantr 481 . . . . . 6  |-  ( ( N  e.  NN  /\  Y  e. IDomn )  ->  (
# `  ( Base `  Y ) )  =  N )
2622, 25breqtrd 4679 . . . . 5  |-  ( ( N  e.  NN  /\  Y  e. IDomn )  ->  2  <_  N )
27 eluz2 11693 . . . . 5  |-  ( N  e.  ( ZZ>= `  2
)  <->  ( 2  e.  ZZ  /\  N  e.  ZZ  /\  2  <_  N ) )
282, 4, 26, 27syl3anbrc 1246 . . . 4  |-  ( ( N  e.  NN  /\  Y  e. IDomn )  ->  N  e.  ( ZZ>= `  2
) )
29 nncn 11028 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  N  e.  CC )
3029ad2antrr 762 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  N  e.  CC )
31 nncn 11028 . . . . . . . . . . . 12  |-  ( x  e.  NN  ->  x  e.  CC )
3231ad2antrl 764 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  x  e.  CC )
33 nnne0 11053 . . . . . . . . . . . 12  |-  ( x  e.  NN  ->  x  =/=  0 )
3433ad2antrl 764 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  x  =/=  0 )
3530, 32, 34divcan1d 10802 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  ( ( N  /  x )  x.  x )  =  N )
3635fveq2d 6195 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  ( ( ZRHom `  Y ) `  ( ( N  /  x )  x.  x
) )  =  ( ( ZRHom `  Y
) `  N )
)
377ad2antlr 763 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  Y  e. Domn )
38 domnring 19296 . . . . . . . . . . . 12  |-  ( Y  e. Domn  ->  Y  e.  Ring )
3937, 38syl 17 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  Y  e.  Ring )
40 eqid 2622 . . . . . . . . . . . 12  |-  ( ZRHom `  Y )  =  ( ZRHom `  Y )
4140zrhrhm 19860 . . . . . . . . . . 11  |-  ( Y  e.  Ring  ->  ( ZRHom `  Y )  e.  (ring RingHom  Y
) )
4239, 41syl 17 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  ( ZRHom `  Y )  e.  (ring RingHom  Y
) )
43 simprr 796 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  x  ||  N
)
44 nnz 11399 . . . . . . . . . . . . 13  |-  ( x  e.  NN  ->  x  e.  ZZ )
4544ad2antrl 764 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  x  e.  ZZ )
463ad2antrr 762 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  N  e.  ZZ )
47 dvdsval2 14986 . . . . . . . . . . . 12  |-  ( ( x  e.  ZZ  /\  x  =/=  0  /\  N  e.  ZZ )  ->  (
x  ||  N  <->  ( N  /  x )  e.  ZZ ) )
4845, 34, 46, 47syl3anc 1326 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  ( x  ||  N  <->  ( N  /  x )  e.  ZZ ) )
4943, 48mpbid 222 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  ( N  /  x )  e.  ZZ )
50 zringbas 19824 . . . . . . . . . . 11  |-  ZZ  =  ( Base ` ring )
51 zringmulr 19827 . . . . . . . . . . 11  |-  x.  =  ( .r ` ring )
52 eqid 2622 . . . . . . . . . . 11  |-  ( .r
`  Y )  =  ( .r `  Y
)
5350, 51, 52rhmmul 18727 . . . . . . . . . 10  |-  ( ( ( ZRHom `  Y
)  e.  (ring RingHom  Y )  /\  ( N  /  x
)  e.  ZZ  /\  x  e.  ZZ )  ->  ( ( ZRHom `  Y ) `  (
( N  /  x
)  x.  x ) )  =  ( ( ( ZRHom `  Y
) `  ( N  /  x ) ) ( .r `  Y ) ( ( ZRHom `  Y ) `  x
) ) )
5442, 49, 45, 53syl3anc 1326 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  ( ( ZRHom `  Y ) `  ( ( N  /  x )  x.  x
) )  =  ( ( ( ZRHom `  Y ) `  ( N  /  x ) ) ( .r `  Y
) ( ( ZRHom `  Y ) `  x
) ) )
55 iddvds 14995 . . . . . . . . . . 11  |-  ( N  e.  ZZ  ->  N  ||  N )
5646, 55syl 17 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  N  ||  N
)
57 nnnn0 11299 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  N  e.  NN0 )
5857ad2antrr 762 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  N  e.  NN0 )
59 eqid 2622 . . . . . . . . . . . 12  |-  ( 0g
`  Y )  =  ( 0g `  Y
)
6023, 40, 59zndvds0 19899 . . . . . . . . . . 11  |-  ( ( N  e.  NN0  /\  N  e.  ZZ )  ->  ( ( ( ZRHom `  Y ) `  N
)  =  ( 0g
`  Y )  <->  N  ||  N
) )
6158, 46, 60syl2anc 693 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  ( (
( ZRHom `  Y
) `  N )  =  ( 0g `  Y )  <->  N  ||  N
) )
6256, 61mpbird 247 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  ( ( ZRHom `  Y ) `  N )  =  ( 0g `  Y ) )
6336, 54, 623eqtr3d 2664 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  ( (
( ZRHom `  Y
) `  ( N  /  x ) ) ( .r `  Y ) ( ( ZRHom `  Y ) `  x
) )  =  ( 0g `  Y ) )
6450, 10rhmf 18726 . . . . . . . . . . 11  |-  ( ( ZRHom `  Y )  e.  (ring RingHom  Y )  ->  ( ZRHom `  Y ) : ZZ --> ( Base `  Y
) )
6542, 64syl 17 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  ( ZRHom `  Y ) : ZZ --> ( Base `  Y )
)
6665, 49ffvelrnd 6360 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  ( ( ZRHom `  Y ) `  ( N  /  x
) )  e.  (
Base `  Y )
)
6765, 45ffvelrnd 6360 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  ( ( ZRHom `  Y ) `  x )  e.  (
Base `  Y )
)
6810, 52, 59domneq0 19297 . . . . . . . . 9  |-  ( ( Y  e. Domn  /\  (
( ZRHom `  Y
) `  ( N  /  x ) )  e.  ( Base `  Y
)  /\  ( ( ZRHom `  Y ) `  x )  e.  (
Base `  Y )
)  ->  ( (
( ( ZRHom `  Y ) `  ( N  /  x ) ) ( .r `  Y
) ( ( ZRHom `  Y ) `  x
) )  =  ( 0g `  Y )  <-> 
( ( ( ZRHom `  Y ) `  ( N  /  x ) )  =  ( 0g `  Y )  \/  (
( ZRHom `  Y
) `  x )  =  ( 0g `  Y ) ) ) )
6937, 66, 67, 68syl3anc 1326 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  ( (
( ( ZRHom `  Y ) `  ( N  /  x ) ) ( .r `  Y
) ( ( ZRHom `  Y ) `  x
) )  =  ( 0g `  Y )  <-> 
( ( ( ZRHom `  Y ) `  ( N  /  x ) )  =  ( 0g `  Y )  \/  (
( ZRHom `  Y
) `  x )  =  ( 0g `  Y ) ) ) )
7063, 69mpbid 222 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  ( (
( ZRHom `  Y
) `  ( N  /  x ) )  =  ( 0g `  Y
)  \/  ( ( ZRHom `  Y ) `  x )  =  ( 0g `  Y ) ) )
7123, 40, 59zndvds0 19899 . . . . . . . . . 10  |-  ( ( N  e.  NN0  /\  ( N  /  x
)  e.  ZZ )  ->  ( ( ( ZRHom `  Y ) `  ( N  /  x
) )  =  ( 0g `  Y )  <-> 
N  ||  ( N  /  x ) ) )
7258, 49, 71syl2anc 693 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  ( (
( ZRHom `  Y
) `  ( N  /  x ) )  =  ( 0g `  Y
)  <->  N  ||  ( N  /  x ) ) )
73 nnre 11027 . . . . . . . . . . . . . 14  |-  ( N  e.  NN  ->  N  e.  RR )
7473ad2antrr 762 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  N  e.  RR )
75 nnre 11027 . . . . . . . . . . . . . 14  |-  ( x  e.  NN  ->  x  e.  RR )
7675ad2antrl 764 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  x  e.  RR )
77 nngt0 11049 . . . . . . . . . . . . . 14  |-  ( N  e.  NN  ->  0  <  N )
7877ad2antrr 762 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  0  <  N )
79 nngt0 11049 . . . . . . . . . . . . . 14  |-  ( x  e.  NN  ->  0  <  x )
8079ad2antrl 764 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  0  <  x )
8174, 76, 78, 80divgt0d 10959 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  0  <  ( N  /  x ) )
82 elnnz 11387 . . . . . . . . . . . 12  |-  ( ( N  /  x )  e.  NN  <->  ( ( N  /  x )  e.  ZZ  /\  0  < 
( N  /  x
) ) )
8349, 81, 82sylanbrc 698 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  ( N  /  x )  e.  NN )
84 dvdsle 15032 . . . . . . . . . . 11  |-  ( ( N  e.  ZZ  /\  ( N  /  x
)  e.  NN )  ->  ( N  ||  ( N  /  x
)  ->  N  <_  ( N  /  x ) ) )
8546, 83, 84syl2anc 693 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  ( N  ||  ( N  /  x
)  ->  N  <_  ( N  /  x ) ) )
86 1red 10055 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  1  e.  RR )
87 0lt1 10550 . . . . . . . . . . . . 13  |-  0  <  1
8887a1i 11 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  0  <  1 )
89 lediv2 10913 . . . . . . . . . . . 12  |-  ( ( ( x  e.  RR  /\  0  <  x )  /\  ( 1  e.  RR  /\  0  <  1 )  /\  ( N  e.  RR  /\  0  <  N ) )  -> 
( x  <_  1  <->  ( N  /  1 )  <_  ( N  /  x ) ) )
9076, 80, 86, 88, 74, 78, 89syl222anc 1342 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  ( x  <_  1  <->  ( N  / 
1 )  <_  ( N  /  x ) ) )
91 nnle1eq1 11048 . . . . . . . . . . . 12  |-  ( x  e.  NN  ->  (
x  <_  1  <->  x  = 
1 ) )
9291ad2antrl 764 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  ( x  <_  1  <->  x  =  1
) )
9330div1d 10793 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  ( N  /  1 )  =  N )
9493breq1d 4663 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  ( ( N  /  1 )  <_ 
( N  /  x
)  <->  N  <_  ( N  /  x ) ) )
9590, 92, 943bitr3rd 299 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  ( N  <_  ( N  /  x
)  <->  x  =  1
) )
9685, 95sylibd 229 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  ( N  ||  ( N  /  x
)  ->  x  = 
1 ) )
9772, 96sylbid 230 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  ( (
( ZRHom `  Y
) `  ( N  /  x ) )  =  ( 0g `  Y
)  ->  x  = 
1 ) )
9823, 40, 59zndvds0 19899 . . . . . . . . . 10  |-  ( ( N  e.  NN0  /\  x  e.  ZZ )  ->  ( ( ( ZRHom `  Y ) `  x
)  =  ( 0g
`  Y )  <->  N  ||  x
) )
9958, 45, 98syl2anc 693 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  ( (
( ZRHom `  Y
) `  x )  =  ( 0g `  Y )  <->  N  ||  x
) )
100 nnnn0 11299 . . . . . . . . . . 11  |-  ( x  e.  NN  ->  x  e.  NN0 )
101100ad2antrl 764 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  x  e.  NN0 )
102 dvdseq 15036 . . . . . . . . . . 11  |-  ( ( ( x  e.  NN0  /\  N  e.  NN0 )  /\  ( x  ||  N  /\  N  ||  x ) )  ->  x  =  N )
103102expr 643 . . . . . . . . . 10  |-  ( ( ( x  e.  NN0  /\  N  e.  NN0 )  /\  x  ||  N )  ->  ( N  ||  x  ->  x  =  N ) )
104101, 58, 43, 103syl21anc 1325 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  ( N  ||  x  ->  x  =  N ) )
10599, 104sylbid 230 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  ( (
( ZRHom `  Y
) `  x )  =  ( 0g `  Y )  ->  x  =  N ) )
10697, 105orim12d 883 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  ( (
( ( ZRHom `  Y ) `  ( N  /  x ) )  =  ( 0g `  Y )  \/  (
( ZRHom `  Y
) `  x )  =  ( 0g `  Y ) )  -> 
( x  =  1  \/  x  =  N ) ) )
10770, 106mpd 15 . . . . . 6  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  ( x  =  1  \/  x  =  N ) )
108107expr 643 . . . . 5  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  x  e.  NN )  ->  ( x  ||  N  ->  ( x  =  1  \/  x  =  N ) ) )
109108ralrimiva 2966 . . . 4  |-  ( ( N  e.  NN  /\  Y  e. IDomn )  ->  A. x  e.  NN  (
x  ||  N  ->  ( x  =  1  \/  x  =  N ) ) )
110 isprm2 15395 . . . 4  |-  ( N  e.  Prime  <->  ( N  e.  ( ZZ>= `  2 )  /\  A. x  e.  NN  ( x  ||  N  -> 
( x  =  1  \/  x  =  N ) ) ) )
11128, 109, 110sylanbrc 698 . . 3  |-  ( ( N  e.  NN  /\  Y  e. IDomn )  ->  N  e.  Prime )
112111ex 450 . 2  |-  ( N  e.  NN  ->  ( Y  e. IDomn  ->  N  e. 
Prime ) )
11323znfld 19909 . . 3  |-  ( N  e.  Prime  ->  Y  e. Field
)
114 fldidom 19305 . . 3  |-  ( Y  e. Field  ->  Y  e. IDomn )
115113, 114syl 17 . 2  |-  ( N  e.  Prime  ->  Y  e. IDomn
)
116112, 115impbid1 215 1  |-  ( N  e.  NN  ->  ( Y  e. IDomn  <->  N  e.  Prime ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   _Vcvv 3200   (/)c0 3915   {csn 4177   {cpr 4179   class class class wbr 4653   -->wf 5884   ` cfv 5888  (class class class)co 6650   2oc2o 7554    ~<_ cdom 7953   Fincfn 7955   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    x. cmul 9941    < clt 10074    <_ cle 10075    / cdiv 10684   NNcn 11020   2c2 11070   NN0cn0 11292   ZZcz 11377   ZZ>=cuz 11687   #chash 13117    || cdvds 14983   Primecprime 15385   Basecbs 15857   .rcmulr 15942   0gc0g 16100   Ringcrg 18547   CRingccrg 18548   RingHom crh 18712  Fieldcfield 18748  NzRingcnzr 19257  Domncdomn 19280  IDomncidom 19281  ℤringzring 19818   ZRHomczrh 19848  ℤ/nczn 19851
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-ec 7744  df-qs 7748  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-xnn0 11364  df-z 11378  df-dec 11494  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984  df-gcd 15217  df-prm 15386  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-0g 16102  df-imas 16168  df-qus 16169  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mulg 17541  df-subg 17591  df-nsg 17592  df-eqg 17593  df-ghm 17658  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-cring 18550  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-rnghom 18715  df-drng 18749  df-field 18750  df-subrg 18778  df-lmod 18865  df-lss 18933  df-lsp 18972  df-sra 19172  df-rgmod 19173  df-lidl 19174  df-rsp 19175  df-2idl 19232  df-nzr 19258  df-rlreg 19283  df-domn 19284  df-idom 19285  df-cnfld 19747  df-zring 19819  df-zrh 19852  df-zn 19855
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator