| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > canthp1lem1 | Structured version Visualization version Unicode version | ||
| Description: Lemma for canthp1 9476. (Contributed by Mario Carneiro, 18-May-2015.) |
| Ref | Expression |
|---|---|
| canthp1lem1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1sdom2 8159 |
. . 3
| |
| 2 | cdaxpdom 9011 |
. . 3
| |
| 3 | 1, 2 | mpan2 707 |
. 2
|
| 4 | sdom0 8092 |
. . . . . 6
| |
| 5 | breq2 4657 |
. . . . . 6
| |
| 6 | 4, 5 | mtbiri 317 |
. . . . 5
|
| 7 | 6 | con2i 134 |
. . . 4
|
| 8 | neq0 3930 |
. . . 4
| |
| 9 | 7, 8 | sylib 208 |
. . 3
|
| 10 | relsdom 7962 |
. . . . . . . . . 10
| |
| 11 | 10 | brrelex2i 5159 |
. . . . . . . . 9
|
| 12 | 11 | adantr 481 |
. . . . . . . 8
|
| 13 | enrefg 7987 |
. . . . . . . 8
| |
| 14 | 12, 13 | syl 17 |
. . . . . . 7
|
| 15 | df2o2 7574 |
. . . . . . . . 9
| |
| 16 | pwpw0 4344 |
. . . . . . . . 9
| |
| 17 | 15, 16 | eqtr4i 2647 |
. . . . . . . 8
|
| 18 | 0ex 4790 |
. . . . . . . . . 10
| |
| 19 | vex 3203 |
. . . . . . . . . 10
| |
| 20 | en2sn 8037 |
. . . . . . . . . 10
| |
| 21 | 18, 19, 20 | mp2an 708 |
. . . . . . . . 9
|
| 22 | pwen 8133 |
. . . . . . . . 9
| |
| 23 | 21, 22 | ax-mp 5 |
. . . . . . . 8
|
| 24 | 17, 23 | eqbrtri 4674 |
. . . . . . 7
|
| 25 | xpen 8123 |
. . . . . . 7
| |
| 26 | 14, 24, 25 | sylancl 694 |
. . . . . 6
|
| 27 | snex 4908 |
. . . . . . . 8
| |
| 28 | 27 | pwex 4848 |
. . . . . . 7
|
| 29 | uncom 3757 |
. . . . . . . . 9
| |
| 30 | simpr 477 |
. . . . . . . . . . 11
| |
| 31 | 30 | snssd 4340 |
. . . . . . . . . 10
|
| 32 | undif 4049 |
. . . . . . . . . 10
| |
| 33 | 31, 32 | sylib 208 |
. . . . . . . . 9
|
| 34 | 29, 33 | syl5eq 2668 |
. . . . . . . 8
|
| 35 | difexg 4808 |
. . . . . . . . . 10
| |
| 36 | 12, 35 | syl 17 |
. . . . . . . . 9
|
| 37 | canth2g 8114 |
. . . . . . . . 9
| |
| 38 | domunsn 8110 |
. . . . . . . . 9
| |
| 39 | 36, 37, 38 | 3syl 18 |
. . . . . . . 8
|
| 40 | 34, 39 | eqbrtrrd 4677 |
. . . . . . 7
|
| 41 | xpdom1g 8057 |
. . . . . . 7
| |
| 42 | 28, 40, 41 | sylancr 695 |
. . . . . 6
|
| 43 | endomtr 8014 |
. . . . . 6
| |
| 44 | 26, 42, 43 | syl2anc 693 |
. . . . 5
|
| 45 | pwcdaen 9007 |
. . . . . . 7
| |
| 46 | 36, 27, 45 | sylancl 694 |
. . . . . 6
|
| 47 | 46 | ensymd 8007 |
. . . . 5
|
| 48 | domentr 8015 |
. . . . 5
| |
| 49 | 44, 47, 48 | syl2anc 693 |
. . . 4
|
| 50 | 27 | a1i 11 |
. . . . . . 7
|
| 51 | incom 3805 |
. . . . . . . . 9
| |
| 52 | disjdif 4040 |
. . . . . . . . 9
| |
| 53 | 51, 52 | eqtri 2644 |
. . . . . . . 8
|
| 54 | 53 | a1i 11 |
. . . . . . 7
|
| 55 | cdaun 8994 |
. . . . . . 7
| |
| 56 | 36, 50, 54, 55 | syl3anc 1326 |
. . . . . 6
|
| 57 | 56, 34 | breqtrd 4679 |
. . . . 5
|
| 58 | pwen 8133 |
. . . . 5
| |
| 59 | 57, 58 | syl 17 |
. . . 4
|
| 60 | domentr 8015 |
. . . 4
| |
| 61 | 49, 59, 60 | syl2anc 693 |
. . 3
|
| 62 | 9, 61 | exlimddv 1863 |
. 2
|
| 63 | domtr 8009 |
. 2
| |
| 64 | 3, 62, 63 | syl2anc 693 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-1o 7560 df-2o 7561 df-er 7742 df-map 7859 df-en 7956 df-dom 7957 df-sdom 7958 df-cda 8990 |
| This theorem is referenced by: canthp1lem2 9475 canthp1 9476 |
| Copyright terms: Public domain | W3C validator |