MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  canthp1lem1 Structured version   Visualization version   Unicode version

Theorem canthp1lem1 9474
Description: Lemma for canthp1 9476. (Contributed by Mario Carneiro, 18-May-2015.)
Assertion
Ref Expression
canthp1lem1  |-  ( 1o 
~<  A  ->  ( A  +c  2o )  ~<_  ~P A )

Proof of Theorem canthp1lem1
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 1sdom2 8159 . . 3  |-  1o  ~<  2o
2 cdaxpdom 9011 . . 3  |-  ( ( 1o  ~<  A  /\  1o  ~<  2o )  -> 
( A  +c  2o )  ~<_  ( A  X.  2o ) )
31, 2mpan2 707 . 2  |-  ( 1o 
~<  A  ->  ( A  +c  2o )  ~<_  ( A  X.  2o ) )
4 sdom0 8092 . . . . . 6  |-  -.  1o  ~< 
(/)
5 breq2 4657 . . . . . 6  |-  ( A  =  (/)  ->  ( 1o 
~<  A  <->  1o  ~<  (/) ) )
64, 5mtbiri 317 . . . . 5  |-  ( A  =  (/)  ->  -.  1o  ~<  A )
76con2i 134 . . . 4  |-  ( 1o 
~<  A  ->  -.  A  =  (/) )
8 neq0 3930 . . . 4  |-  ( -.  A  =  (/)  <->  E. x  x  e.  A )
97, 8sylib 208 . . 3  |-  ( 1o 
~<  A  ->  E. x  x  e.  A )
10 relsdom 7962 . . . . . . . . . 10  |-  Rel  ~<
1110brrelex2i 5159 . . . . . . . . 9  |-  ( 1o 
~<  A  ->  A  e. 
_V )
1211adantr 481 . . . . . . . 8  |-  ( ( 1o  ~<  A  /\  x  e.  A )  ->  A  e.  _V )
13 enrefg 7987 . . . . . . . 8  |-  ( A  e.  _V  ->  A  ~~  A )
1412, 13syl 17 . . . . . . 7  |-  ( ( 1o  ~<  A  /\  x  e.  A )  ->  A  ~~  A )
15 df2o2 7574 . . . . . . . . 9  |-  2o  =  { (/) ,  { (/) } }
16 pwpw0 4344 . . . . . . . . 9  |-  ~P { (/)
}  =  { (/) ,  { (/) } }
1715, 16eqtr4i 2647 . . . . . . . 8  |-  2o  =  ~P { (/) }
18 0ex 4790 . . . . . . . . . 10  |-  (/)  e.  _V
19 vex 3203 . . . . . . . . . 10  |-  x  e. 
_V
20 en2sn 8037 . . . . . . . . . 10  |-  ( (
(/)  e.  _V  /\  x  e.  _V )  ->  { (/) } 
~~  { x }
)
2118, 19, 20mp2an 708 . . . . . . . . 9  |-  { (/) } 
~~  { x }
22 pwen 8133 . . . . . . . . 9  |-  ( {
(/) }  ~~  { x }  ->  ~P { (/) } 
~~  ~P { x }
)
2321, 22ax-mp 5 . . . . . . . 8  |-  ~P { (/)
}  ~~  ~P { x }
2417, 23eqbrtri 4674 . . . . . . 7  |-  2o  ~~  ~P { x }
25 xpen 8123 . . . . . . 7  |-  ( ( A  ~~  A  /\  2o  ~~  ~P { x } )  ->  ( A  X.  2o )  ~~  ( A  X.  ~P {
x } ) )
2614, 24, 25sylancl 694 . . . . . 6  |-  ( ( 1o  ~<  A  /\  x  e.  A )  ->  ( A  X.  2o )  ~~  ( A  X.  ~P { x } ) )
27 snex 4908 . . . . . . . 8  |-  { x }  e.  _V
2827pwex 4848 . . . . . . 7  |-  ~P {
x }  e.  _V
29 uncom 3757 . . . . . . . . 9  |-  ( ( A  \  { x } )  u.  {
x } )  =  ( { x }  u.  ( A  \  {
x } ) )
30 simpr 477 . . . . . . . . . . 11  |-  ( ( 1o  ~<  A  /\  x  e.  A )  ->  x  e.  A )
3130snssd 4340 . . . . . . . . . 10  |-  ( ( 1o  ~<  A  /\  x  e.  A )  ->  { x }  C_  A )
32 undif 4049 . . . . . . . . . 10  |-  ( { x }  C_  A  <->  ( { x }  u.  ( A  \  { x } ) )  =  A )
3331, 32sylib 208 . . . . . . . . 9  |-  ( ( 1o  ~<  A  /\  x  e.  A )  ->  ( { x }  u.  ( A  \  {
x } ) )  =  A )
3429, 33syl5eq 2668 . . . . . . . 8  |-  ( ( 1o  ~<  A  /\  x  e.  A )  ->  ( ( A  \  { x } )  u.  { x }
)  =  A )
35 difexg 4808 . . . . . . . . . 10  |-  ( A  e.  _V  ->  ( A  \  { x }
)  e.  _V )
3612, 35syl 17 . . . . . . . . 9  |-  ( ( 1o  ~<  A  /\  x  e.  A )  ->  ( A  \  {
x } )  e. 
_V )
37 canth2g 8114 . . . . . . . . 9  |-  ( ( A  \  { x } )  e.  _V  ->  ( A  \  {
x } )  ~<  ~P ( A  \  {
x } ) )
38 domunsn 8110 . . . . . . . . 9  |-  ( ( A  \  { x } )  ~<  ~P ( A  \  { x }
)  ->  ( ( A  \  { x }
)  u.  { x } )  ~<_  ~P ( A  \  { x }
) )
3936, 37, 383syl 18 . . . . . . . 8  |-  ( ( 1o  ~<  A  /\  x  e.  A )  ->  ( ( A  \  { x } )  u.  { x }
)  ~<_  ~P ( A  \  { x } ) )
4034, 39eqbrtrrd 4677 . . . . . . 7  |-  ( ( 1o  ~<  A  /\  x  e.  A )  ->  A  ~<_  ~P ( A  \  { x } ) )
41 xpdom1g 8057 . . . . . . 7  |-  ( ( ~P { x }  e.  _V  /\  A  ~<_  ~P ( A  \  {
x } ) )  ->  ( A  X.  ~P { x } )  ~<_  ( ~P ( A 
\  { x }
)  X.  ~P {
x } ) )
4228, 40, 41sylancr 695 . . . . . 6  |-  ( ( 1o  ~<  A  /\  x  e.  A )  ->  ( A  X.  ~P { x } )  ~<_  ( ~P ( A 
\  { x }
)  X.  ~P {
x } ) )
43 endomtr 8014 . . . . . 6  |-  ( ( ( A  X.  2o )  ~~  ( A  X.  ~P { x } )  /\  ( A  X.  ~P { x } )  ~<_  ( ~P ( A 
\  { x }
)  X.  ~P {
x } ) )  ->  ( A  X.  2o )  ~<_  ( ~P ( A  \  { x } )  X.  ~P { x } ) )
4426, 42, 43syl2anc 693 . . . . 5  |-  ( ( 1o  ~<  A  /\  x  e.  A )  ->  ( A  X.  2o )  ~<_  ( ~P ( A  \  { x }
)  X.  ~P {
x } ) )
45 pwcdaen 9007 . . . . . . 7  |-  ( ( ( A  \  {
x } )  e. 
_V  /\  { x }  e.  _V )  ->  ~P ( ( A 
\  { x }
)  +c  { x } )  ~~  ( ~P ( A  \  {
x } )  X. 
~P { x }
) )
4636, 27, 45sylancl 694 . . . . . 6  |-  ( ( 1o  ~<  A  /\  x  e.  A )  ->  ~P ( ( A 
\  { x }
)  +c  { x } )  ~~  ( ~P ( A  \  {
x } )  X. 
~P { x }
) )
4746ensymd 8007 . . . . 5  |-  ( ( 1o  ~<  A  /\  x  e.  A )  ->  ( ~P ( A 
\  { x }
)  X.  ~P {
x } )  ~~  ~P ( ( A  \  { x } )  +c  { x }
) )
48 domentr 8015 . . . . 5  |-  ( ( ( A  X.  2o )  ~<_  ( ~P ( A  \  { x }
)  X.  ~P {
x } )  /\  ( ~P ( A  \  { x } )  X.  ~P { x } )  ~~  ~P ( ( A  \  { x } )  +c  { x }
) )  ->  ( A  X.  2o )  ~<_  ~P ( ( A  \  { x } )  +c  { x }
) )
4944, 47, 48syl2anc 693 . . . 4  |-  ( ( 1o  ~<  A  /\  x  e.  A )  ->  ( A  X.  2o )  ~<_  ~P ( ( A 
\  { x }
)  +c  { x } ) )
5027a1i 11 . . . . . . 7  |-  ( ( 1o  ~<  A  /\  x  e.  A )  ->  { x }  e.  _V )
51 incom 3805 . . . . . . . . 9  |-  ( ( A  \  { x } )  i^i  {
x } )  =  ( { x }  i^i  ( A  \  {
x } ) )
52 disjdif 4040 . . . . . . . . 9  |-  ( { x }  i^i  ( A  \  { x }
) )  =  (/)
5351, 52eqtri 2644 . . . . . . . 8  |-  ( ( A  \  { x } )  i^i  {
x } )  =  (/)
5453a1i 11 . . . . . . 7  |-  ( ( 1o  ~<  A  /\  x  e.  A )  ->  ( ( A  \  { x } )  i^i  { x }
)  =  (/) )
55 cdaun 8994 . . . . . . 7  |-  ( ( ( A  \  {
x } )  e. 
_V  /\  { x }  e.  _V  /\  (
( A  \  {
x } )  i^i 
{ x } )  =  (/) )  ->  (
( A  \  {
x } )  +c 
{ x } ) 
~~  ( ( A 
\  { x }
)  u.  { x } ) )
5636, 50, 54, 55syl3anc 1326 . . . . . 6  |-  ( ( 1o  ~<  A  /\  x  e.  A )  ->  ( ( A  \  { x } )  +c  { x }
)  ~~  ( ( A  \  { x }
)  u.  { x } ) )
5756, 34breqtrd 4679 . . . . 5  |-  ( ( 1o  ~<  A  /\  x  e.  A )  ->  ( ( A  \  { x } )  +c  { x }
)  ~~  A )
58 pwen 8133 . . . . 5  |-  ( ( ( A  \  {
x } )  +c 
{ x } ) 
~~  A  ->  ~P ( ( A  \  { x } )  +c  { x }
)  ~~  ~P A
)
5957, 58syl 17 . . . 4  |-  ( ( 1o  ~<  A  /\  x  e.  A )  ->  ~P ( ( A 
\  { x }
)  +c  { x } )  ~~  ~P A )
60 domentr 8015 . . . 4  |-  ( ( ( A  X.  2o )  ~<_  ~P ( ( A 
\  { x }
)  +c  { x } )  /\  ~P ( ( A  \  { x } )  +c  { x }
)  ~~  ~P A
)  ->  ( A  X.  2o )  ~<_  ~P A
)
6149, 59, 60syl2anc 693 . . 3  |-  ( ( 1o  ~<  A  /\  x  e.  A )  ->  ( A  X.  2o )  ~<_  ~P A )
629, 61exlimddv 1863 . 2  |-  ( 1o 
~<  A  ->  ( A  X.  2o )  ~<_  ~P A )
63 domtr 8009 . 2  |-  ( ( ( A  +c  2o )  ~<_  ( A  X.  2o )  /\  ( A  X.  2o )  ~<_  ~P A )  ->  ( A  +c  2o )  ~<_  ~P A )
643, 62, 63syl2anc 693 1  |-  ( 1o 
~<  A  ->  ( A  +c  2o )  ~<_  ~P A )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   _Vcvv 3200    \ cdif 3571    u. cun 3572    i^i cin 3573    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   {csn 4177   {cpr 4179   class class class wbr 4653    X. cxp 5112  (class class class)co 6650   1oc1o 7553   2oc2o 7554    ~~ cen 7952    ~<_ cdom 7953    ~< csdm 7954    +c ccda 8989
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-1o 7560  df-2o 7561  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-cda 8990
This theorem is referenced by:  canthp1lem2  9475  canthp1  9476
  Copyright terms: Public domain W3C validator