![]() |
Mathbox for Chen-Pang He |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ssoninhaus | Structured version Visualization version Unicode version |
Description: The ordinal topologies
![]() ![]() |
Ref | Expression |
---|---|
ssoninhaus |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1on 7567 |
. . 3
![]() ![]() ![]() ![]() | |
2 | 2on 7568 |
. . 3
![]() ![]() ![]() ![]() | |
3 | prssi 4353 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 1, 2, 3 | mp2an 708 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | df1o2 7572 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() | |
6 | pw0 4343 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
7 | 5, 6 | eqtr4i 2647 |
. . . 4
![]() ![]() ![]() ![]() ![]() |
8 | 0ex 4790 |
. . . . 5
![]() ![]() ![]() ![]() | |
9 | dishaus 21186 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
10 | 8, 9 | ax-mp 5 |
. . . 4
![]() ![]() ![]() ![]() ![]() |
11 | 7, 10 | eqeltri 2697 |
. . 3
![]() ![]() ![]() ![]() |
12 | df2o2 7574 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
13 | pwpw0 4344 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
14 | 12, 13 | eqtr4i 2647 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
15 | p0ex 4853 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() | |
16 | dishaus 21186 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
17 | 15, 16 | ax-mp 5 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
18 | 14, 17 | eqeltri 2697 |
. . 3
![]() ![]() ![]() ![]() |
19 | prssi 4353 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
20 | 11, 18, 19 | mp2an 708 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
21 | 4, 20 | ssini 3836 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-tr 4753 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-ord 5726 df-on 5727 df-suc 5729 df-1o 7560 df-2o 7561 df-top 20699 df-haus 21119 |
This theorem is referenced by: onint1 32448 oninhaus 32449 |
Copyright terms: Public domain | W3C validator |