| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dff1o2 | Structured version Visualization version Unicode version | ||
| Description: Alternate definition of one-to-one onto function. (Contributed by NM, 10-Feb-1997.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
| Ref | Expression |
|---|---|
| dff1o2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-f1o 5895 |
. 2
| |
| 2 | df-f1 5893 |
. . . 4
| |
| 3 | df-fo 5894 |
. . . 4
| |
| 4 | 2, 3 | anbi12i 733 |
. . 3
|
| 5 | anass 681 |
. . . 4
| |
| 6 | 3anan12 1051 |
. . . . . 6
| |
| 7 | 6 | anbi1i 731 |
. . . . 5
|
| 8 | eqimss 3657 |
. . . . . . . 8
| |
| 9 | df-f 5892 |
. . . . . . . . 9
| |
| 10 | 9 | biimpri 218 |
. . . . . . . 8
|
| 11 | 8, 10 | sylan2 491 |
. . . . . . 7
|
| 12 | 11 | 3adant2 1080 |
. . . . . 6
|
| 13 | 12 | pm4.71i 664 |
. . . . 5
|
| 14 | ancom 466 |
. . . . 5
| |
| 15 | 7, 13, 14 | 3bitr4ri 293 |
. . . 4
|
| 16 | 5, 15 | bitri 264 |
. . 3
|
| 17 | 4, 16 | bitri 264 |
. 2
|
| 18 | 1, 17 | bitri 264 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-in 3581 df-ss 3588 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 |
| This theorem is referenced by: dff1o3 6143 dff1o4 6145 f1orn 6147 tz7.49c 7541 fiint 8237 symgfixelsi 17855 dfrelog 24312 adj1o 28753 fresf1o 29433 f1mptrn 29435 esumc 30113 ntrneinex 38375 stoweidlem39 40256 |
| Copyright terms: Public domain | W3C validator |