Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fresf1o Structured version   Visualization version   Unicode version

Theorem fresf1o 29433
Description: Conditions for a restriction to be a one-to-one onto function. (Contributed by Thierry Arnoux, 7-Dec-2016.)
Assertion
Ref Expression
fresf1o  |-  ( ( Fun  F  /\  C  C_ 
ran  F  /\  Fun  ( `' F  |`  C ) )  ->  ( F  |`  ( `' F " C ) ) : ( `' F " C ) -1-1-onto-> C )

Proof of Theorem fresf1o
StepHypRef Expression
1 funfn 5918 . . . . . . . 8  |-  ( Fun  ( `' F  |`  C )  <->  ( `' F  |`  C )  Fn 
dom  ( `' F  |`  C ) )
21biimpi 206 . . . . . . 7  |-  ( Fun  ( `' F  |`  C )  ->  ( `' F  |`  C )  Fn  dom  ( `' F  |`  C )
)
323ad2ant3 1084 . . . . . 6  |-  ( ( Fun  F  /\  C  C_ 
ran  F  /\  Fun  ( `' F  |`  C ) )  ->  ( `' F  |`  C )  Fn 
dom  ( `' F  |`  C ) )
4 simp2 1062 . . . . . . . . 9  |-  ( ( Fun  F  /\  C  C_ 
ran  F  /\  Fun  ( `' F  |`  C ) )  ->  C  C_  ran  F )
5 df-rn 5125 . . . . . . . . 9  |-  ran  F  =  dom  `' F
64, 5syl6sseq 3651 . . . . . . . 8  |-  ( ( Fun  F  /\  C  C_ 
ran  F  /\  Fun  ( `' F  |`  C ) )  ->  C  C_  dom  `' F )
7 ssdmres 5420 . . . . . . . 8  |-  ( C 
C_  dom  `' F  <->  dom  ( `' F  |`  C )  =  C )
86, 7sylib 208 . . . . . . 7  |-  ( ( Fun  F  /\  C  C_ 
ran  F  /\  Fun  ( `' F  |`  C ) )  ->  dom  ( `' F  |`  C )  =  C )
98fneq2d 5982 . . . . . 6  |-  ( ( Fun  F  /\  C  C_ 
ran  F  /\  Fun  ( `' F  |`  C ) )  ->  ( ( `' F  |`  C )  Fn  dom  ( `' F  |`  C )  <->  ( `' F  |`  C )  Fn  C ) )
103, 9mpbid 222 . . . . 5  |-  ( ( Fun  F  /\  C  C_ 
ran  F  /\  Fun  ( `' F  |`  C ) )  ->  ( `' F  |`  C )  Fn  C )
11 simp1 1061 . . . . . . 7  |-  ( ( Fun  F  /\  C  C_ 
ran  F  /\  Fun  ( `' F  |`  C ) )  ->  Fun  F )
12 funres 5929 . . . . . . 7  |-  ( Fun 
F  ->  Fun  ( F  |`  ( `' F " C ) ) )
1311, 12syl 17 . . . . . 6  |-  ( ( Fun  F  /\  C  C_ 
ran  F  /\  Fun  ( `' F  |`  C ) )  ->  Fun  ( F  |`  ( `' F " C ) ) )
14 funcnvres2 5969 . . . . . . . 8  |-  ( Fun 
F  ->  `' ( `' F  |`  C )  =  ( F  |`  ( `' F " C ) ) )
1511, 14syl 17 . . . . . . 7  |-  ( ( Fun  F  /\  C  C_ 
ran  F  /\  Fun  ( `' F  |`  C ) )  ->  `' ( `' F  |`  C )  =  ( F  |`  ( `' F " C ) ) )
1615funeqd 5910 . . . . . 6  |-  ( ( Fun  F  /\  C  C_ 
ran  F  /\  Fun  ( `' F  |`  C ) )  ->  ( Fun  `' ( `' F  |`  C )  <->  Fun  ( F  |`  ( `' F " C ) ) ) )
1713, 16mpbird 247 . . . . 5  |-  ( ( Fun  F  /\  C  C_ 
ran  F  /\  Fun  ( `' F  |`  C ) )  ->  Fun  `' ( `' F  |`  C ) )
18 df-ima 5127 . . . . . . 7  |-  ( `' F " C )  =  ran  ( `' F  |`  C )
1918eqcomi 2631 . . . . . 6  |-  ran  ( `' F  |`  C )  =  ( `' F " C )
2019a1i 11 . . . . 5  |-  ( ( Fun  F  /\  C  C_ 
ran  F  /\  Fun  ( `' F  |`  C ) )  ->  ran  ( `' F  |`  C )  =  ( `' F " C ) )
2110, 17, 203jca 1242 . . . 4  |-  ( ( Fun  F  /\  C  C_ 
ran  F  /\  Fun  ( `' F  |`  C ) )  ->  ( ( `' F  |`  C )  Fn  C  /\  Fun  `' ( `' F  |`  C )  /\  ran  ( `' F  |`  C )  =  ( `' F " C ) ) )
22 dff1o2 6142 . . . 4  |-  ( ( `' F  |`  C ) : C -1-1-onto-> ( `' F " C )  <->  ( ( `' F  |`  C )  Fn  C  /\  Fun  `' ( `' F  |`  C )  /\  ran  ( `' F  |`  C )  =  ( `' F " C ) ) )
2321, 22sylibr 224 . . 3  |-  ( ( Fun  F  /\  C  C_ 
ran  F  /\  Fun  ( `' F  |`  C ) )  ->  ( `' F  |`  C ) : C -1-1-onto-> ( `' F " C ) )
24 f1ocnv 6149 . . 3  |-  ( ( `' F  |`  C ) : C -1-1-onto-> ( `' F " C )  ->  `' ( `' F  |`  C ) : ( `' F " C ) -1-1-onto-> C )
2523, 24syl 17 . 2  |-  ( ( Fun  F  /\  C  C_ 
ran  F  /\  Fun  ( `' F  |`  C ) )  ->  `' ( `' F  |`  C ) : ( `' F " C ) -1-1-onto-> C )
26 f1oeq1 6127 . . 3  |-  ( `' ( `' F  |`  C )  =  ( F  |`  ( `' F " C ) )  ->  ( `' ( `' F  |`  C ) : ( `' F " C ) -1-1-onto-> C  <->  ( F  |`  ( `' F " C ) ) : ( `' F " C ) -1-1-onto-> C ) )
2711, 14, 263syl 18 . 2  |-  ( ( Fun  F  /\  C  C_ 
ran  F  /\  Fun  ( `' F  |`  C ) )  ->  ( `' ( `' F  |`  C ) : ( `' F " C ) -1-1-onto-> C  <->  ( F  |`  ( `' F " C ) ) : ( `' F " C ) -1-1-onto-> C ) )
2825, 27mpbid 222 1  |-  ( ( Fun  F  /\  C  C_ 
ran  F  /\  Fun  ( `' F  |`  C ) )  ->  ( F  |`  ( `' F " C ) ) : ( `' F " C ) -1-1-onto-> C )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ w3a 1037    = wceq 1483    C_ wss 3574   `'ccnv 5113   dom cdm 5114   ran crn 5115    |` cres 5116   "cima 5117   Fun wfun 5882    Fn wfn 5883   -1-1-onto->wf1o 5887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895
This theorem is referenced by:  carsggect  30380
  Copyright terms: Public domain W3C validator