MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  symgfixelsi Structured version   Visualization version   Unicode version

Theorem symgfixelsi 17855
Description: The restriction of a permutation fixing an element to the set with this element removed is an element of the restricted symmetric group. (Contributed by AV, 4-Jan-2019.)
Hypotheses
Ref Expression
symgfixf.p  |-  P  =  ( Base `  ( SymGrp `
 N ) )
symgfixf.q  |-  Q  =  { q  e.  P  |  ( q `  K )  =  K }
symgfixf.s  |-  S  =  ( Base `  ( SymGrp `
 ( N  \  { K } ) ) )
symgfixf.d  |-  D  =  ( N  \  { K } )
Assertion
Ref Expression
symgfixelsi  |-  ( ( K  e.  N  /\  F  e.  Q )  ->  ( F  |`  D )  e.  S )
Distinct variable groups:    K, q    P, q
Allowed substitution hints:    D( q)    Q( q)    S( q)    F( q)    N( q)

Proof of Theorem symgfixelsi
StepHypRef Expression
1 symgfixf.p . . . . 5  |-  P  =  ( Base `  ( SymGrp `
 N ) )
2 symgfixf.q . . . . 5  |-  Q  =  { q  e.  P  |  ( q `  K )  =  K }
31, 2symgfixelq 17853 . . . 4  |-  ( F  e.  Q  ->  ( F  e.  Q  <->  ( F : N -1-1-onto-> N  /\  ( F `
 K )  =  K ) ) )
4 f1of1 6136 . . . . . . . . . 10  |-  ( F : N -1-1-onto-> N  ->  F : N -1-1-> N )
54ad2antrl 764 . . . . . . . . 9  |-  ( ( K  e.  N  /\  ( F : N -1-1-onto-> N  /\  ( F `  K )  =  K ) )  ->  F : N -1-1-> N )
6 difssd 3738 . . . . . . . . 9  |-  ( ( K  e.  N  /\  ( F : N -1-1-onto-> N  /\  ( F `  K )  =  K ) )  ->  ( N  \  { K } )  C_  N )
7 f1ores 6151 . . . . . . . . 9  |-  ( ( F : N -1-1-> N  /\  ( N  \  { K } )  C_  N
)  ->  ( F  |`  ( N  \  { K } ) ) : ( N  \  { K } ) -1-1-onto-> ( F " ( N  \  { K }
) ) )
85, 6, 7syl2anc 693 . . . . . . . 8  |-  ( ( K  e.  N  /\  ( F : N -1-1-onto-> N  /\  ( F `  K )  =  K ) )  ->  ( F  |`  ( N  \  { K } ) ) : ( N  \  { K } ) -1-1-onto-> ( F " ( N  \  { K }
) ) )
9 symgfixf.d . . . . . . . . . . 11  |-  D  =  ( N  \  { K } )
109reseq2i 5393 . . . . . . . . . 10  |-  ( F  |`  D )  =  ( F  |`  ( N  \  { K } ) )
1110a1i 11 . . . . . . . . 9  |-  ( ( K  e.  N  /\  ( F : N -1-1-onto-> N  /\  ( F `  K )  =  K ) )  ->  ( F  |`  D )  =  ( F  |`  ( N  \  { K } ) ) )
129a1i 11 . . . . . . . . 9  |-  ( ( K  e.  N  /\  ( F : N -1-1-onto-> N  /\  ( F `  K )  =  K ) )  ->  D  =  ( N  \  { K } ) )
13 f1ofo 6144 . . . . . . . . . . . . 13  |-  ( F : N -1-1-onto-> N  ->  F : N -onto-> N )
14 foima 6120 . . . . . . . . . . . . . 14  |-  ( F : N -onto-> N  -> 
( F " N
)  =  N )
1514eqcomd 2628 . . . . . . . . . . . . 13  |-  ( F : N -onto-> N  ->  N  =  ( F " N ) )
1613, 15syl 17 . . . . . . . . . . . 12  |-  ( F : N -1-1-onto-> N  ->  N  =  ( F " N ) )
1716ad2antrl 764 . . . . . . . . . . 11  |-  ( ( K  e.  N  /\  ( F : N -1-1-onto-> N  /\  ( F `  K )  =  K ) )  ->  N  =  ( F " N ) )
18 sneq 4187 . . . . . . . . . . . . . 14  |-  ( K  =  ( F `  K )  ->  { K }  =  { ( F `  K ) } )
1918eqcoms 2630 . . . . . . . . . . . . 13  |-  ( ( F `  K )  =  K  ->  { K }  =  { ( F `  K ) } )
2019ad2antll 765 . . . . . . . . . . . 12  |-  ( ( K  e.  N  /\  ( F : N -1-1-onto-> N  /\  ( F `  K )  =  K ) )  ->  { K }  =  { ( F `  K ) } )
21 f1ofn 6138 . . . . . . . . . . . . . 14  |-  ( F : N -1-1-onto-> N  ->  F  Fn  N )
2221ad2antrl 764 . . . . . . . . . . . . 13  |-  ( ( K  e.  N  /\  ( F : N -1-1-onto-> N  /\  ( F `  K )  =  K ) )  ->  F  Fn  N
)
23 simpl 473 . . . . . . . . . . . . 13  |-  ( ( K  e.  N  /\  ( F : N -1-1-onto-> N  /\  ( F `  K )  =  K ) )  ->  K  e.  N
)
24 fnsnfv 6258 . . . . . . . . . . . . 13  |-  ( ( F  Fn  N  /\  K  e.  N )  ->  { ( F `  K ) }  =  ( F " { K } ) )
2522, 23, 24syl2anc 693 . . . . . . . . . . . 12  |-  ( ( K  e.  N  /\  ( F : N -1-1-onto-> N  /\  ( F `  K )  =  K ) )  ->  { ( F `
 K ) }  =  ( F " { K } ) )
2620, 25eqtrd 2656 . . . . . . . . . . 11  |-  ( ( K  e.  N  /\  ( F : N -1-1-onto-> N  /\  ( F `  K )  =  K ) )  ->  { K }  =  ( F " { K } ) )
2717, 26difeq12d 3729 . . . . . . . . . 10  |-  ( ( K  e.  N  /\  ( F : N -1-1-onto-> N  /\  ( F `  K )  =  K ) )  ->  ( N  \  { K } )  =  ( ( F " N )  \  ( F " { K }
) ) )
28 dff1o2 6142 . . . . . . . . . . . . 13  |-  ( F : N -1-1-onto-> N  <->  ( F  Fn  N  /\  Fun  `' F  /\  ran  F  =  N ) )
2928simp2bi 1077 . . . . . . . . . . . 12  |-  ( F : N -1-1-onto-> N  ->  Fun  `' F
)
3029ad2antrl 764 . . . . . . . . . . 11  |-  ( ( K  e.  N  /\  ( F : N -1-1-onto-> N  /\  ( F `  K )  =  K ) )  ->  Fun  `' F
)
31 imadif 5973 . . . . . . . . . . 11  |-  ( Fun  `' F  ->  ( F
" ( N  \  { K } ) )  =  ( ( F
" N )  \ 
( F " { K } ) ) )
3230, 31syl 17 . . . . . . . . . 10  |-  ( ( K  e.  N  /\  ( F : N -1-1-onto-> N  /\  ( F `  K )  =  K ) )  ->  ( F "
( N  \  { K } ) )  =  ( ( F " N )  \  ( F " { K }
) ) )
3327, 12, 323eqtr4d 2666 . . . . . . . . 9  |-  ( ( K  e.  N  /\  ( F : N -1-1-onto-> N  /\  ( F `  K )  =  K ) )  ->  D  =  ( F " ( N 
\  { K }
) ) )
3411, 12, 33f1oeq123d 6133 . . . . . . . 8  |-  ( ( K  e.  N  /\  ( F : N -1-1-onto-> N  /\  ( F `  K )  =  K ) )  ->  ( ( F  |`  D ) : D -1-1-onto-> D  <->  ( F  |`  ( N  \  { K } ) ) : ( N 
\  { K }
)
-1-1-onto-> ( F " ( N 
\  { K }
) ) ) )
358, 34mpbird 247 . . . . . . 7  |-  ( ( K  e.  N  /\  ( F : N -1-1-onto-> N  /\  ( F `  K )  =  K ) )  ->  ( F  |`  D ) : D -1-1-onto-> D
)
3635ancoms 469 . . . . . 6  |-  ( ( ( F : N -1-1-onto-> N  /\  ( F `  K
)  =  K )  /\  K  e.  N
)  ->  ( F  |`  D ) : D -1-1-onto-> D
)
37 symgfixf.s . . . . . . 7  |-  S  =  ( Base `  ( SymGrp `
 ( N  \  { K } ) ) )
381, 2, 37, 9symgfixels 17854 . . . . . 6  |-  ( F  e.  Q  ->  (
( F  |`  D )  e.  S  <->  ( F  |`  D ) : D -1-1-onto-> D
) )
3936, 38syl5ibr 236 . . . . 5  |-  ( F  e.  Q  ->  (
( ( F : N
-1-1-onto-> N  /\  ( F `  K )  =  K )  /\  K  e.  N )  ->  ( F  |`  D )  e.  S ) )
4039expd 452 . . . 4  |-  ( F  e.  Q  ->  (
( F : N -1-1-onto-> N  /\  ( F `  K
)  =  K )  ->  ( K  e.  N  ->  ( F  |`  D )  e.  S
) ) )
413, 40sylbid 230 . . 3  |-  ( F  e.  Q  ->  ( F  e.  Q  ->  ( K  e.  N  -> 
( F  |`  D )  e.  S ) ) )
4241pm2.43i 52 . 2  |-  ( F  e.  Q  ->  ( K  e.  N  ->  ( F  |`  D )  e.  S ) )
4342impcom 446 1  |-  ( ( K  e.  N  /\  F  e.  Q )  ->  ( F  |`  D )  e.  S )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   {crab 2916    \ cdif 3571    C_ wss 3574   {csn 4177   `'ccnv 5113   ran crn 5115    |` cres 5116   "cima 5117   Fun wfun 5882    Fn wfn 5883   -1-1->wf1 5885   -onto->wfo 5886   -1-1-onto->wf1o 5887   ` cfv 5888   Basecbs 15857   SymGrpcsymg 17797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-plusg 15954  df-tset 15960  df-symg 17798
This theorem is referenced by:  symgfixf  17856  psgnfix1  19944  psgndif  19948  zrhcopsgndif  19949  smadiadetlem3  20474
  Copyright terms: Public domain W3C validator