| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > stoweidlem39 | Structured version Visualization version Unicode version | ||
| Description: This lemma is used to
prove that there exists a function x as in the
proof of Lemma 2 in [BrosowskiDeutsh] p. 91: assuming that
|
| Ref | Expression |
|---|---|
| stoweidlem39.1 |
|
| stoweidlem39.2 |
|
| stoweidlem39.3 |
|
| stoweidlem39.4 |
|
| stoweidlem39.5 |
|
| stoweidlem39.6 |
|
| stoweidlem39.7 |
|
| stoweidlem39.8 |
|
| stoweidlem39.9 |
|
| stoweidlem39.10 |
|
| stoweidlem39.11 |
|
| stoweidlem39.12 |
|
| stoweidlem39.13 |
|
| Ref | Expression |
|---|---|
| stoweidlem39 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | stoweidlem39.8 |
. . . . . . 7
| |
| 2 | stoweidlem39.9 |
. . . . . . 7
| |
| 3 | 1, 2 | jca 554 |
. . . . . 6
|
| 4 | ssn0 3976 |
. . . . . 6
| |
| 5 | unieq 4444 |
. . . . . . . 8
| |
| 6 | uni0 4465 |
. . . . . . . 8
| |
| 7 | 5, 6 | syl6eq 2672 |
. . . . . . 7
|
| 8 | 7 | necon3i 2826 |
. . . . . 6
|
| 9 | 3, 4, 8 | 3syl 18 |
. . . . 5
|
| 10 | 9 | neneqd 2799 |
. . . 4
|
| 11 | stoweidlem39.7 |
. . . . . 6
| |
| 12 | elinel2 3800 |
. . . . . 6
| |
| 13 | 11, 12 | syl 17 |
. . . . 5
|
| 14 | fz1f1o 14441 |
. . . . 5
| |
| 15 | pm2.53 388 |
. . . . 5
| |
| 16 | 13, 14, 15 | 3syl 18 |
. . . 4
|
| 17 | 10, 16 | mpd 15 |
. . 3
|
| 18 | oveq2 6658 |
. . . . . 6
| |
| 19 | f1oeq2 6128 |
. . . . . 6
| |
| 20 | 18, 19 | syl 17 |
. . . . 5
|
| 21 | 20 | exbidv 1850 |
. . . 4
|
| 22 | 21 | rspcev 3309 |
. . 3
|
| 23 | 17, 22 | syl 17 |
. 2
|
| 24 | f1of 6137 |
. . . . . . . 8
| |
| 25 | 24 | adantl 482 |
. . . . . . 7
|
| 26 | simpll 790 |
. . . . . . . 8
| |
| 27 | elinel1 3799 |
. . . . . . . . 9
| |
| 28 | 27 | elpwid 4170 |
. . . . . . . 8
|
| 29 | 26, 11, 28 | 3syl 18 |
. . . . . . 7
|
| 30 | 25, 29 | fssd 6057 |
. . . . . 6
|
| 31 | 1 | ad2antrr 762 |
. . . . . . 7
|
| 32 | dff1o2 6142 |
. . . . . . . . . 10
| |
| 33 | 32 | simp3bi 1078 |
. . . . . . . . 9
|
| 34 | 33 | unieqd 4446 |
. . . . . . . 8
|
| 35 | 34 | adantl 482 |
. . . . . . 7
|
| 36 | 31, 35 | sseqtr4d 3642 |
. . . . . 6
|
| 37 | stoweidlem39.1 |
. . . . . . . . 9
| |
| 38 | nfv 1843 |
. . . . . . . . 9
| |
| 39 | 37, 38 | nfan 1828 |
. . . . . . . 8
|
| 40 | nfv 1843 |
. . . . . . . 8
| |
| 41 | 39, 40 | nfan 1828 |
. . . . . . 7
|
| 42 | stoweidlem39.2 |
. . . . . . . . 9
| |
| 43 | nfv 1843 |
. . . . . . . . 9
| |
| 44 | 42, 43 | nfan 1828 |
. . . . . . . 8
|
| 45 | nfv 1843 |
. . . . . . . 8
| |
| 46 | 44, 45 | nfan 1828 |
. . . . . . 7
|
| 47 | stoweidlem39.3 |
. . . . . . . . 9
| |
| 48 | nfv 1843 |
. . . . . . . . 9
| |
| 49 | 47, 48 | nfan 1828 |
. . . . . . . 8
|
| 50 | nfv 1843 |
. . . . . . . 8
| |
| 51 | 49, 50 | nfan 1828 |
. . . . . . 7
|
| 52 | stoweidlem39.5 |
. . . . . . 7
| |
| 53 | stoweidlem39.6 |
. . . . . . 7
| |
| 54 | eqid 2622 |
. . . . . . 7
| |
| 55 | simplr 792 |
. . . . . . 7
| |
| 56 | simpr 477 |
. . . . . . 7
| |
| 57 | stoweidlem39.10 |
. . . . . . . 8
| |
| 58 | 57 | ad2antrr 762 |
. . . . . . 7
|
| 59 | stoweidlem39.11 |
. . . . . . . . . . . 12
| |
| 60 | 59 | sselda 3603 |
. . . . . . . . . . 11
|
| 61 | notnot 136 |
. . . . . . . . . . . . . . 15
| |
| 62 | 61 | intnand 962 |
. . . . . . . . . . . . . 14
|
| 63 | 62 | adantl 482 |
. . . . . . . . . . . . 13
|
| 64 | eldif 3584 |
. . . . . . . . . . . . 13
| |
| 65 | 63, 64 | sylnibr 319 |
. . . . . . . . . . . 12
|
| 66 | stoweidlem39.4 |
. . . . . . . . . . . . 13
| |
| 67 | 66 | eleq2i 2693 |
. . . . . . . . . . . 12
|
| 68 | 65, 67 | sylnibr 319 |
. . . . . . . . . . 11
|
| 69 | 60, 68 | eldifd 3585 |
. . . . . . . . . 10
|
| 70 | 69 | ralrimiva 2966 |
. . . . . . . . 9
|
| 71 | dfss3 3592 |
. . . . . . . . 9
| |
| 72 | 70, 71 | sylibr 224 |
. . . . . . . 8
|
| 73 | 72 | ad2antrr 762 |
. . . . . . 7
|
| 74 | stoweidlem39.12 |
. . . . . . . 8
| |
| 75 | 74 | ad2antrr 762 |
. . . . . . 7
|
| 76 | stoweidlem39.13 |
. . . . . . . 8
| |
| 77 | 76 | ad2antrr 762 |
. . . . . . 7
|
| 78 | 13 | ad2antrr 762 |
. . . . . . . 8
|
| 79 | mptfi 8265 |
. . . . . . . 8
| |
| 80 | rnfi 8249 |
. . . . . . . 8
| |
| 81 | 78, 79, 80 | 3syl 18 |
. . . . . . 7
|
| 82 | 41, 46, 51, 52, 53, 54, 29, 55, 56, 58, 73, 75, 77, 81 | stoweidlem31 40248 |
. . . . . 6
|
| 83 | 30, 36, 82 | 3jca 1242 |
. . . . 5
|
| 84 | 83 | ex 450 |
. . . 4
|
| 85 | 84 | eximdv 1846 |
. . 3
|
| 86 | 85 | reximdva 3017 |
. 2
|
| 87 | 23, 86 | mpd 15 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-card 8765 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-n0 11293 df-z 11378 df-uz 11688 df-rp 11833 df-fz 12327 df-hash 13118 |
| This theorem is referenced by: stoweidlem57 40274 |
| Copyright terms: Public domain | W3C validator |