MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dffin1-5 Structured version   Visualization version   Unicode version

Theorem dffin1-5 9210
Description: Compact quantifier-free version of the standard definition df-fin 7959. (Contributed by Stefan O'Rear, 6-Jan-2015.)
Assertion
Ref Expression
dffin1-5  |-  Fin  =  (  ~~  " om )

Proof of Theorem dffin1-5
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ensymb 8004 . . . 4  |-  ( x 
~~  y  <->  y  ~~  x )
21rexbii 3041 . . 3  |-  ( E. y  e.  om  x  ~~  y  <->  E. y  e.  om  y  ~~  x )
32abbii 2739 . 2  |-  { x  |  E. y  e.  om  x  ~~  y }  =  { x  |  E. y  e.  om  y  ~~  x }
4 df-fin 7959 . 2  |-  Fin  =  { x  |  E. y  e.  om  x  ~~  y }
5 dfima2 5468 . 2  |-  (  ~~  " om )  =  {
x  |  E. y  e.  om  y  ~~  x }
63, 4, 53eqtr4i 2654 1  |-  Fin  =  (  ~~  " om )
Colors of variables: wff setvar class
Syntax hints:    = wceq 1483   {cab 2608   E.wrex 2913   class class class wbr 4653   "cima 5117   omcom 7065    ~~ cen 7952   Fincfn 7955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-er 7742  df-en 7956  df-fin 7959
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator