Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dffinxpf Structured version   Visualization version   Unicode version

Theorem dffinxpf 33222
Description: This theorem is the same as the definition df-finxp 33221, except that the large function is replaced by a class variable for brevity. (Contributed by ML, 24-Oct-2020.)
Hypothesis
Ref Expression
dffinxpf.1  |-  F  =  ( n  e.  om ,  x  e.  _V  |->  if ( ( n  =  1o  /\  x  e.  U ) ,  (/) ,  if ( x  e.  ( _V  X.  U
) ,  <. U. n ,  ( 1st `  x
) >. ,  <. n ,  x >. ) ) )
Assertion
Ref Expression
dffinxpf  |-  ( U ^^ ^^ N )  =  { y  |  ( N  e.  om  /\  (/)  =  ( rec ( F ,  <. N , 
y >. ) `  N
) ) }
Distinct variable groups:    U, n, x, y    n, N, x, y
Allowed substitution hints:    F( x, y, n)

Proof of Theorem dffinxpf
StepHypRef Expression
1 df-finxp 33221 . 2  |-  ( U ^^ ^^ N )  =  { y  |  ( N  e.  om  /\  (/)  =  ( rec (
( n  e.  om ,  x  e.  _V  |->  if ( ( n  =  1o  /\  x  e.  U ) ,  (/) ,  if ( x  e.  ( _V  X.  U
) ,  <. U. n ,  ( 1st `  x
) >. ,  <. n ,  x >. ) ) ) ,  <. N ,  y
>. ) `  N ) ) }
2 dffinxpf.1 . . . . . . 7  |-  F  =  ( n  e.  om ,  x  e.  _V  |->  if ( ( n  =  1o  /\  x  e.  U ) ,  (/) ,  if ( x  e.  ( _V  X.  U
) ,  <. U. n ,  ( 1st `  x
) >. ,  <. n ,  x >. ) ) )
3 rdgeq1 7507 . . . . . . 7  |-  ( F  =  ( n  e. 
om ,  x  e. 
_V  |->  if ( ( n  =  1o  /\  x  e.  U ) ,  (/) ,  if ( x  e.  ( _V 
X.  U ) , 
<. U. n ,  ( 1st `  x )
>. ,  <. n ,  x >. ) ) )  ->  rec ( F ,  <. N ,  y >.
)  =  rec (
( n  e.  om ,  x  e.  _V  |->  if ( ( n  =  1o  /\  x  e.  U ) ,  (/) ,  if ( x  e.  ( _V  X.  U
) ,  <. U. n ,  ( 1st `  x
) >. ,  <. n ,  x >. ) ) ) ,  <. N ,  y
>. ) )
42, 3ax-mp 5 . . . . . 6  |-  rec ( F ,  <. N , 
y >. )  =  rec ( ( n  e. 
om ,  x  e. 
_V  |->  if ( ( n  =  1o  /\  x  e.  U ) ,  (/) ,  if ( x  e.  ( _V 
X.  U ) , 
<. U. n ,  ( 1st `  x )
>. ,  <. n ,  x >. ) ) ) ,  <. N ,  y
>. )
54fveq1i 6192 . . . . 5  |-  ( rec ( F ,  <. N ,  y >. ) `  N )  =  ( rec ( ( n  e.  om ,  x  e.  _V  |->  if ( ( n  =  1o  /\  x  e.  U ) ,  (/) ,  if ( x  e.  ( _V 
X.  U ) , 
<. U. n ,  ( 1st `  x )
>. ,  <. n ,  x >. ) ) ) ,  <. N ,  y
>. ) `  N )
65eqeq2i 2634 . . . 4  |-  ( (/)  =  ( rec ( F ,  <. N , 
y >. ) `  N
)  <->  (/)  =  ( rec ( ( n  e. 
om ,  x  e. 
_V  |->  if ( ( n  =  1o  /\  x  e.  U ) ,  (/) ,  if ( x  e.  ( _V 
X.  U ) , 
<. U. n ,  ( 1st `  x )
>. ,  <. n ,  x >. ) ) ) ,  <. N ,  y
>. ) `  N ) )
76anbi2i 730 . . 3  |-  ( ( N  e.  om  /\  (/)  =  ( rec ( F ,  <. N , 
y >. ) `  N
) )  <->  ( N  e.  om  /\  (/)  =  ( rec ( ( n  e.  om ,  x  e.  _V  |->  if ( ( n  =  1o  /\  x  e.  U ) ,  (/) ,  if ( x  e.  ( _V 
X.  U ) , 
<. U. n ,  ( 1st `  x )
>. ,  <. n ,  x >. ) ) ) ,  <. N ,  y
>. ) `  N ) ) )
87abbii 2739 . 2  |-  { y  |  ( N  e. 
om  /\  (/)  =  ( rec ( F ,  <. N ,  y >.
) `  N )
) }  =  {
y  |  ( N  e.  om  /\  (/)  =  ( rec ( ( n  e.  om ,  x  e.  _V  |->  if ( ( n  =  1o  /\  x  e.  U ) ,  (/) ,  if ( x  e.  ( _V 
X.  U ) , 
<. U. n ,  ( 1st `  x )
>. ,  <. n ,  x >. ) ) ) ,  <. N ,  y
>. ) `  N ) ) }
91, 8eqtr4i 2647 1  |-  ( U ^^ ^^ N )  =  { y  |  ( N  e.  om  /\  (/)  =  ( rec ( F ,  <. N , 
y >. ) `  N
) ) }
Colors of variables: wff setvar class
Syntax hints:    /\ wa 384    = wceq 1483    e. wcel 1990   {cab 2608   _Vcvv 3200   (/)c0 3915   ifcif 4086   <.cop 4183   U.cuni 4436    X. cxp 5112   ` cfv 5888    |-> cmpt2 6652   omcom 7065   1stc1st 7166   reccrdg 7505   1oc1o 7553   ^^
^^cfinxp 33220
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-xp 5120  df-cnv 5122  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-iota 5851  df-fv 5896  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-finxp 33221
This theorem is referenced by:  finxpreclem6  33233  finxpsuclem  33234
  Copyright terms: Public domain W3C validator