Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  finxpsuclem Structured version   Visualization version   Unicode version

Theorem finxpsuclem 33234
Description: Lemma for finxpsuc 33235. (Contributed by ML, 24-Oct-2020.)
Hypothesis
Ref Expression
finxpsuclem.1  |-  F  =  ( n  e.  om ,  x  e.  _V  |->  if ( ( n  =  1o  /\  x  e.  U ) ,  (/) ,  if ( x  e.  ( _V  X.  U
) ,  <. U. n ,  ( 1st `  x
) >. ,  <. n ,  x >. ) ) )
Assertion
Ref Expression
finxpsuclem  |-  ( ( N  e.  om  /\  1o  C_  N )  -> 
( U ^^ ^^ suc  N )  =  ( ( U ^^ ^^ N )  X.  U
) )
Distinct variable groups:    n, N, x    U, n, x
Allowed substitution hints:    F( x, n)

Proof of Theorem finxpsuclem
Dummy variables  z 
y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 peano2 7086 . . . . . . . . . 10  |-  ( N  e.  om  ->  suc  N  e.  om )
21adantr 481 . . . . . . . . 9  |-  ( ( N  e.  om  /\  1o  C_  N )  ->  suc  N  e.  om )
3 1on 7567 . . . . . . . . . . . . 13  |-  1o  e.  On
43onordi 5832 . . . . . . . . . . . 12  |-  Ord  1o
5 nnord 7073 . . . . . . . . . . . 12  |-  ( N  e.  om  ->  Ord  N )
6 ordsseleq 5752 . . . . . . . . . . . 12  |-  ( ( Ord  1o  /\  Ord  N )  ->  ( 1o  C_  N  <->  ( 1o  e.  N  \/  1o  =  N ) ) )
74, 5, 6sylancr 695 . . . . . . . . . . 11  |-  ( N  e.  om  ->  ( 1o  C_  N  <->  ( 1o  e.  N  \/  1o  =  N ) ) )
87biimpa 501 . . . . . . . . . 10  |-  ( ( N  e.  om  /\  1o  C_  N )  -> 
( 1o  e.  N  \/  1o  =  N ) )
9 elelsuc 5797 . . . . . . . . . . . . 13  |-  ( 1o  e.  N  ->  1o  e.  suc  N )
109a1i 11 . . . . . . . . . . . 12  |-  ( N  e.  om  ->  ( 1o  e.  N  ->  1o  e.  suc  N ) )
11 sucidg 5803 . . . . . . . . . . . . 13  |-  ( N  e.  om  ->  N  e.  suc  N )
12 eleq1 2689 . . . . . . . . . . . . 13  |-  ( 1o  =  N  ->  ( 1o  e.  suc  N  <->  N  e.  suc  N ) )
1311, 12syl5ibrcom 237 . . . . . . . . . . . 12  |-  ( N  e.  om  ->  ( 1o  =  N  ->  1o  e.  suc  N ) )
1410, 13jaod 395 . . . . . . . . . . 11  |-  ( N  e.  om  ->  (
( 1o  e.  N  \/  1o  =  N )  ->  1o  e.  suc  N ) )
1514adantr 481 . . . . . . . . . 10  |-  ( ( N  e.  om  /\  1o  C_  N )  -> 
( ( 1o  e.  N  \/  1o  =  N )  ->  1o  e.  suc  N ) )
168, 15mpd 15 . . . . . . . . 9  |-  ( ( N  e.  om  /\  1o  C_  N )  ->  1o  e.  suc  N )
17 finxpsuclem.1 . . . . . . . . . 10  |-  F  =  ( n  e.  om ,  x  e.  _V  |->  if ( ( n  =  1o  /\  x  e.  U ) ,  (/) ,  if ( x  e.  ( _V  X.  U
) ,  <. U. n ,  ( 1st `  x
) >. ,  <. n ,  x >. ) ) )
1817finxpreclem6 33233 . . . . . . . . 9  |-  ( ( suc  N  e.  om  /\  1o  e.  suc  N
)  ->  ( U ^^ ^^ suc  N ) 
C_  ( _V  X.  U ) )
192, 16, 18syl2anc 693 . . . . . . . 8  |-  ( ( N  e.  om  /\  1o  C_  N )  -> 
( U ^^ ^^ suc  N )  C_  ( _V  X.  U ) )
2019sselda 3603 . . . . . . 7  |-  ( ( ( N  e.  om  /\  1o  C_  N )  /\  y  e.  ( U ^^ ^^ suc  N
) )  ->  y  e.  ( _V  X.  U
) )
211ad2antrr 762 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  om  /\  1o  C_  N )  /\  y  e.  ( _V  X.  U ) )  ->  suc  N  e.  om )
22 df-2o 7561 . . . . . . . . . . . . . . 15  |-  2o  =  suc  1o
23 ordsucsssuc 7023 . . . . . . . . . . . . . . . . 17  |-  ( ( Ord  1o  /\  Ord  N )  ->  ( 1o  C_  N  <->  suc  1o  C_  suc  N ) )
244, 5, 23sylancr 695 . . . . . . . . . . . . . . . 16  |-  ( N  e.  om  ->  ( 1o  C_  N  <->  suc  1o  C_  suc  N ) )
2524biimpa 501 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  om  /\  1o  C_  N )  ->  suc  1o  C_  suc  N )
2622, 25syl5eqss 3649 . . . . . . . . . . . . . 14  |-  ( ( N  e.  om  /\  1o  C_  N )  ->  2o  C_  suc  N )
2726adantr 481 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  om  /\  1o  C_  N )  /\  y  e.  ( _V  X.  U ) )  ->  2o  C_  suc  N )
28 simpr 477 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  om  /\  1o  C_  N )  /\  y  e.  ( _V  X.  U ) )  ->  y  e.  ( _V  X.  U ) )
2917finxpreclem4 33231 . . . . . . . . . . . . 13  |-  ( ( ( suc  N  e. 
om  /\  2o  C_  suc  N )  /\  y  e.  ( _V  X.  U
) )  ->  ( rec ( F ,  <. suc 
N ,  y >.
) `  suc  N )  =  ( rec ( F ,  <. U. suc  N ,  ( 1st `  y
) >. ) `  U. suc  N ) )
3021, 27, 28, 29syl21anc 1325 . . . . . . . . . . . 12  |-  ( ( ( N  e.  om  /\  1o  C_  N )  /\  y  e.  ( _V  X.  U ) )  ->  ( rec ( F ,  <. suc  N ,  y >. ) `  suc  N )  =  ( rec ( F ,  <. U. suc  N , 
( 1st `  y
) >. ) `  U. suc  N ) )
31 ordunisuc 7032 . . . . . . . . . . . . . . . 16  |-  ( Ord 
N  ->  U. suc  N  =  N )
325, 31syl 17 . . . . . . . . . . . . . . 15  |-  ( N  e.  om  ->  U. suc  N  =  N )
33 opeq1 4402 . . . . . . . . . . . . . . . 16  |-  ( U. suc  N  =  N  ->  <. U. suc  N , 
( 1st `  y
) >.  =  <. N , 
( 1st `  y
) >. )
34 rdgeq2 7508 . . . . . . . . . . . . . . . 16  |-  ( <. U. suc  N ,  ( 1st `  y )
>.  =  <. N , 
( 1st `  y
) >.  ->  rec ( F ,  <. U. suc  N ,  ( 1st `  y
) >. )  =  rec ( F ,  <. N , 
( 1st `  y
) >. ) )
3533, 34syl 17 . . . . . . . . . . . . . . 15  |-  ( U. suc  N  =  N  ->  rec ( F ,  <. U.
suc  N ,  ( 1st `  y )
>. )  =  rec ( F ,  <. N , 
( 1st `  y
) >. ) )
3632, 35syl 17 . . . . . . . . . . . . . 14  |-  ( N  e.  om  ->  rec ( F ,  <. U. suc  N ,  ( 1st `  y
) >. )  =  rec ( F ,  <. N , 
( 1st `  y
) >. ) )
3736, 32fveq12d 6197 . . . . . . . . . . . . 13  |-  ( N  e.  om  ->  ( rec ( F ,  <. U.
suc  N ,  ( 1st `  y )
>. ) `  U. suc  N )  =  ( rec ( F ,  <. N ,  ( 1st `  y
) >. ) `  N
) )
3837ad2antrr 762 . . . . . . . . . . . 12  |-  ( ( ( N  e.  om  /\  1o  C_  N )  /\  y  e.  ( _V  X.  U ) )  ->  ( rec ( F ,  <. U. suc  N ,  ( 1st `  y
) >. ) `  U. suc  N )  =  ( rec ( F ,  <. N ,  ( 1st `  y ) >. ) `  N ) )
3930, 38eqtrd 2656 . . . . . . . . . . 11  |-  ( ( ( N  e.  om  /\  1o  C_  N )  /\  y  e.  ( _V  X.  U ) )  ->  ( rec ( F ,  <. suc  N ,  y >. ) `  suc  N )  =  ( rec ( F ,  <. N ,  ( 1st `  y )
>. ) `  N ) )
4039eqeq2d 2632 . . . . . . . . . 10  |-  ( ( ( N  e.  om  /\  1o  C_  N )  /\  y  e.  ( _V  X.  U ) )  ->  ( (/)  =  ( rec ( F ,  <. suc  N ,  y
>. ) `  suc  N
)  <->  (/)  =  ( rec ( F ,  <. N ,  ( 1st `  y
) >. ) `  N
) ) )
411biantrurd 529 . . . . . . . . . . . 12  |-  ( N  e.  om  ->  ( (/)  =  ( rec ( F ,  <. suc  N ,  y >. ) `  suc  N )  <->  ( suc  N  e.  om  /\  (/)  =  ( rec ( F ,  <. suc  N ,  y
>. ) `  suc  N
) ) ) )
4217dffinxpf 33222 . . . . . . . . . . . . 13  |-  ( U ^^ ^^ suc  N
)  =  { y  |  ( suc  N  e.  om  /\  (/)  =  ( rec ( F ,  <. suc  N ,  y
>. ) `  suc  N
) ) }
4342abeq2i 2735 . . . . . . . . . . . 12  |-  ( y  e.  ( U ^^ ^^ suc  N )  <->  ( suc  N  e.  om  /\  (/)  =  ( rec ( F ,  <. suc  N ,  y
>. ) `  suc  N
) ) )
4441, 43syl6rbbr 279 . . . . . . . . . . 11  |-  ( N  e.  om  ->  (
y  e.  ( U ^^ ^^ suc  N
)  <->  (/)  =  ( rec ( F ,  <. suc 
N ,  y >.
) `  suc  N ) ) )
4544ad2antrr 762 . . . . . . . . . 10  |-  ( ( ( N  e.  om  /\  1o  C_  N )  /\  y  e.  ( _V  X.  U ) )  ->  ( y  e.  ( U ^^ ^^ suc  N )  <->  (/)  =  ( rec ( F ,  <. suc  N ,  y
>. ) `  suc  N
) ) )
46 fvex 6201 . . . . . . . . . . . . 13  |-  ( 1st `  y )  e.  _V
47 opeq2 4403 . . . . . . . . . . . . . . . . 17  |-  ( z  =  ( 1st `  y
)  ->  <. N , 
z >.  =  <. N , 
( 1st `  y
) >. )
48 rdgeq2 7508 . . . . . . . . . . . . . . . . 17  |-  ( <. N ,  z >.  = 
<. N ,  ( 1st `  y ) >.  ->  rec ( F ,  <. N , 
z >. )  =  rec ( F ,  <. N , 
( 1st `  y
) >. ) )
4947, 48syl 17 . . . . . . . . . . . . . . . 16  |-  ( z  =  ( 1st `  y
)  ->  rec ( F ,  <. N , 
z >. )  =  rec ( F ,  <. N , 
( 1st `  y
) >. ) )
5049fveq1d 6193 . . . . . . . . . . . . . . 15  |-  ( z  =  ( 1st `  y
)  ->  ( rec ( F ,  <. N , 
z >. ) `  N
)  =  ( rec ( F ,  <. N ,  ( 1st `  y
) >. ) `  N
) )
5150eqeq2d 2632 . . . . . . . . . . . . . 14  |-  ( z  =  ( 1st `  y
)  ->  ( (/)  =  ( rec ( F ,  <. N ,  z >.
) `  N )  <->  (/)  =  ( rec ( F ,  <. N , 
( 1st `  y
) >. ) `  N
) ) )
5251anbi2d 740 . . . . . . . . . . . . 13  |-  ( z  =  ( 1st `  y
)  ->  ( ( N  e.  om  /\  (/)  =  ( rec ( F ,  <. N ,  z >.
) `  N )
)  <->  ( N  e. 
om  /\  (/)  =  ( rec ( F ,  <. N ,  ( 1st `  y ) >. ) `  N ) ) ) )
5317dffinxpf 33222 . . . . . . . . . . . . 13  |-  ( U ^^ ^^ N )  =  { z  |  ( N  e.  om  /\  (/)  =  ( rec ( F ,  <. N , 
z >. ) `  N
) ) }
5446, 52, 53elab2 3354 . . . . . . . . . . . 12  |-  ( ( 1st `  y )  e.  ( U ^^ ^^ N )  <->  ( N  e.  om  /\  (/)  =  ( rec ( F ,  <. N ,  ( 1st `  y ) >. ) `  N ) ) )
5554baib 944 . . . . . . . . . . 11  |-  ( N  e.  om  ->  (
( 1st `  y
)  e.  ( U ^^ ^^ N )  <->  (/)  =  ( rec ( F ,  <. N , 
( 1st `  y
) >. ) `  N
) ) )
5655ad2antrr 762 . . . . . . . . . 10  |-  ( ( ( N  e.  om  /\  1o  C_  N )  /\  y  e.  ( _V  X.  U ) )  ->  ( ( 1st `  y )  e.  ( U ^^ ^^ N
)  <->  (/)  =  ( rec ( F ,  <. N ,  ( 1st `  y
) >. ) `  N
) ) )
5740, 45, 563bitr4d 300 . . . . . . . . 9  |-  ( ( ( N  e.  om  /\  1o  C_  N )  /\  y  e.  ( _V  X.  U ) )  ->  ( y  e.  ( U ^^ ^^ suc  N )  <->  ( 1st `  y )  e.  ( U ^^ ^^ N
) ) )
5857biimpd 219 . . . . . . . 8  |-  ( ( ( N  e.  om  /\  1o  C_  N )  /\  y  e.  ( _V  X.  U ) )  ->  ( y  e.  ( U ^^ ^^ suc  N )  ->  ( 1st `  y )  e.  ( U ^^ ^^ N ) ) )
5958impancom 456 . . . . . . 7  |-  ( ( ( N  e.  om  /\  1o  C_  N )  /\  y  e.  ( U ^^ ^^ suc  N
) )  ->  (
y  e.  ( _V 
X.  U )  -> 
( 1st `  y
)  e.  ( U ^^ ^^ N ) ) )
6020, 59mpd 15 . . . . . 6  |-  ( ( ( N  e.  om  /\  1o  C_  N )  /\  y  e.  ( U ^^ ^^ suc  N
) )  ->  ( 1st `  y )  e.  ( U ^^ ^^ N ) )
6160ex 450 . . . . 5  |-  ( ( N  e.  om  /\  1o  C_  N )  -> 
( y  e.  ( U ^^ ^^ suc  N )  ->  ( 1st `  y )  e.  ( U ^^ ^^ N
) ) )
6220ex 450 . . . . 5  |-  ( ( N  e.  om  /\  1o  C_  N )  -> 
( y  e.  ( U ^^ ^^ suc  N )  ->  y  e.  ( _V  X.  U
) ) )
6361, 62jcad 555 . . . 4  |-  ( ( N  e.  om  /\  1o  C_  N )  -> 
( y  e.  ( U ^^ ^^ suc  N )  ->  ( ( 1st `  y )  e.  ( U ^^ ^^ N )  /\  y  e.  ( _V  X.  U
) ) ) )
6457exbiri 652 . . . . . 6  |-  ( ( N  e.  om  /\  1o  C_  N )  -> 
( y  e.  ( _V  X.  U )  ->  ( ( 1st `  y )  e.  ( U ^^ ^^ N
)  ->  y  e.  ( U ^^ ^^ suc  N ) ) ) )
6564impd 447 . . . . 5  |-  ( ( N  e.  om  /\  1o  C_  N )  -> 
( ( y  e.  ( _V  X.  U
)  /\  ( 1st `  y )  e.  ( U ^^ ^^ N
) )  ->  y  e.  ( U ^^ ^^ suc  N ) ) )
6665ancomsd 470 . . . 4  |-  ( ( N  e.  om  /\  1o  C_  N )  -> 
( ( ( 1st `  y )  e.  ( U ^^ ^^ N
)  /\  y  e.  ( _V  X.  U
) )  ->  y  e.  ( U ^^ ^^ suc  N ) ) )
6763, 66impbid 202 . . 3  |-  ( ( N  e.  om  /\  1o  C_  N )  -> 
( y  e.  ( U ^^ ^^ suc  N )  <->  ( ( 1st `  y )  e.  ( U ^^ ^^ N
)  /\  y  e.  ( _V  X.  U
) ) ) )
68 elxp8 33219 . . 3  |-  ( y  e.  ( ( U ^^ ^^ N )  X.  U )  <->  ( ( 1st `  y )  e.  ( U ^^ ^^ N )  /\  y  e.  ( _V  X.  U
) ) )
6967, 68syl6bbr 278 . 2  |-  ( ( N  e.  om  /\  1o  C_  N )  -> 
( y  e.  ( U ^^ ^^ suc  N )  <->  y  e.  ( ( U ^^ ^^ N )  X.  U
) ) )
7069eqrdv 2620 1  |-  ( ( N  e.  om  /\  1o  C_  N )  -> 
( U ^^ ^^ suc  N )  =  ( ( U ^^ ^^ N )  X.  U
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200    C_ wss 3574   (/)c0 3915   ifcif 4086   <.cop 4183   U.cuni 4436    X. cxp 5112   Ord word 5722   suc csuc 5725   ` cfv 5888    |-> cmpt2 6652   omcom 7065   1stc1st 7166   reccrdg 7505   1oc1o 7553   2oc2o 7554   ^^
^^cfinxp 33220
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-reg 8497
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-finxp 33221
This theorem is referenced by:  finxpsuc  33235
  Copyright terms: Public domain W3C validator