Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dffr5 Structured version   Visualization version   Unicode version

Theorem dffr5 31643
Description: A quantifier free definition of a well-founded relationship. (Contributed by Scott Fenton, 11-Apr-2011.)
Assertion
Ref Expression
dffr5  |-  ( R  Fr  A  <->  ( ~P A  \  { (/) } ) 
C_  ran  (  _E  \  (  _E  o.  `' R ) ) )

Proof of Theorem dffr5
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eldif 3584 . . . . 5  |-  ( x  e.  ( ~P A  \  { (/) } )  <->  ( x  e.  ~P A  /\  -.  x  e.  { (/) } ) )
2 selpw 4165 . . . . . 6  |-  ( x  e.  ~P A  <->  x  C_  A
)
3 velsn 4193 . . . . . . 7  |-  ( x  e.  { (/) }  <->  x  =  (/) )
43necon3bbii 2841 . . . . . 6  |-  ( -.  x  e.  { (/) }  <-> 
x  =/=  (/) )
52, 4anbi12i 733 . . . . 5  |-  ( ( x  e.  ~P A  /\  -.  x  e.  { (/)
} )  <->  ( x  C_  A  /\  x  =/=  (/) ) )
61, 5bitri 264 . . . 4  |-  ( x  e.  ( ~P A  \  { (/) } )  <->  ( x  C_  A  /\  x  =/=  (/) ) )
7 brdif 4705 . . . . . . 7  |-  ( y (  _E  \  (  _E  o.  `' R ) ) x  <->  ( y  _E  x  /\  -.  y
(  _E  o.  `' R ) x ) )
8 epel 5032 . . . . . . . 8  |-  ( y  _E  x  <->  y  e.  x )
9 vex 3203 . . . . . . . . . . 11  |-  y  e. 
_V
10 vex 3203 . . . . . . . . . . 11  |-  x  e. 
_V
119, 10coep 31641 . . . . . . . . . 10  |-  ( y (  _E  o.  `' R ) x  <->  E. z  e.  x  y `' R z )
12 vex 3203 . . . . . . . . . . . 12  |-  z  e. 
_V
139, 12brcnv 5305 . . . . . . . . . . 11  |-  ( y `' R z  <->  z R
y )
1413rexbii 3041 . . . . . . . . . 10  |-  ( E. z  e.  x  y `' R z  <->  E. z  e.  x  z R
y )
15 dfrex2 2996 . . . . . . . . . 10  |-  ( E. z  e.  x  z R y  <->  -.  A. z  e.  x  -.  z R y )
1611, 14, 153bitrri 287 . . . . . . . . 9  |-  ( -. 
A. z  e.  x  -.  z R y  <->  y (  _E  o.  `' R ) x )
1716con1bii 346 . . . . . . . 8  |-  ( -.  y (  _E  o.  `' R ) x  <->  A. z  e.  x  -.  z R y )
188, 17anbi12i 733 . . . . . . 7  |-  ( ( y  _E  x  /\  -.  y (  _E  o.  `' R ) x )  <-> 
( y  e.  x  /\  A. z  e.  x  -.  z R y ) )
197, 18bitri 264 . . . . . 6  |-  ( y (  _E  \  (  _E  o.  `' R ) ) x  <->  ( y  e.  x  /\  A. z  e.  x  -.  z R y ) )
2019exbii 1774 . . . . 5  |-  ( E. y  y (  _E 
\  (  _E  o.  `' R ) ) x  <->  E. y ( y  e.  x  /\  A. z  e.  x  -.  z R y ) )
2110elrn 5366 . . . . 5  |-  ( x  e.  ran  (  _E 
\  (  _E  o.  `' R ) )  <->  E. y 
y (  _E  \ 
(  _E  o.  `' R ) ) x )
22 df-rex 2918 . . . . 5  |-  ( E. y  e.  x  A. z  e.  x  -.  z R y  <->  E. y
( y  e.  x  /\  A. z  e.  x  -.  z R y ) )
2320, 21, 223bitr4i 292 . . . 4  |-  ( x  e.  ran  (  _E 
\  (  _E  o.  `' R ) )  <->  E. y  e.  x  A. z  e.  x  -.  z R y )
246, 23imbi12i 340 . . 3  |-  ( ( x  e.  ( ~P A  \  { (/) } )  ->  x  e.  ran  (  _E  \  (  _E  o.  `' R ) ) )  <->  ( (
x  C_  A  /\  x  =/=  (/) )  ->  E. y  e.  x  A. z  e.  x  -.  z R y ) )
2524albii 1747 . 2  |-  ( A. x ( x  e.  ( ~P A  \  { (/) } )  ->  x  e.  ran  (  _E 
\  (  _E  o.  `' R ) ) )  <->  A. x ( ( x 
C_  A  /\  x  =/=  (/) )  ->  E. y  e.  x  A. z  e.  x  -.  z R y ) )
26 dfss2 3591 . 2  |-  ( ( ~P A  \  { (/)
} )  C_  ran  (  _E  \  (  _E  o.  `' R ) )  <->  A. x ( x  e.  ( ~P A  \  { (/) } )  ->  x  e.  ran  (  _E 
\  (  _E  o.  `' R ) ) ) )
27 df-fr 5073 . 2  |-  ( R  Fr  A  <->  A. x
( ( x  C_  A  /\  x  =/=  (/) )  ->  E. y  e.  x  A. z  e.  x  -.  z R y ) )
2825, 26, 273bitr4ri 293 1  |-  ( R  Fr  A  <->  ( ~P A  \  { (/) } ) 
C_  ran  (  _E  \  (  _E  o.  `' R ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384   A.wal 1481   E.wex 1704    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913    \ cdif 3571    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   {csn 4177   class class class wbr 4653    _E cep 5028    Fr wfr 5070   `'ccnv 5113   ran crn 5115    o. ccom 5118
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-eprel 5029  df-fr 5073  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator