MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dffun5 Structured version   Visualization version   Unicode version

Theorem dffun5 5901
Description: Alternate definition of function. (Contributed by NM, 29-Dec-1996.)
Assertion
Ref Expression
dffun5  |-  ( Fun 
A  <->  ( Rel  A  /\  A. x E. z A. y ( <. x ,  y >.  e.  A  ->  y  =  z ) ) )
Distinct variable group:    x, y, z, A

Proof of Theorem dffun5
StepHypRef Expression
1 dffun3 5899 . 2  |-  ( Fun 
A  <->  ( Rel  A  /\  A. x E. z A. y ( x A y  ->  y  =  z ) ) )
2 df-br 4654 . . . . . . 7  |-  ( x A y  <->  <. x ,  y >.  e.  A
)
32imbi1i 339 . . . . . 6  |-  ( ( x A y  -> 
y  =  z )  <-> 
( <. x ,  y
>.  e.  A  ->  y  =  z ) )
43albii 1747 . . . . 5  |-  ( A. y ( x A y  ->  y  =  z )  <->  A. y
( <. x ,  y
>.  e.  A  ->  y  =  z ) )
54exbii 1774 . . . 4  |-  ( E. z A. y ( x A y  -> 
y  =  z )  <->  E. z A. y (
<. x ,  y >.  e.  A  ->  y  =  z ) )
65albii 1747 . . 3  |-  ( A. x E. z A. y
( x A y  ->  y  =  z )  <->  A. x E. z A. y ( <. x ,  y >.  e.  A  ->  y  =  z ) )
76anbi2i 730 . 2  |-  ( ( Rel  A  /\  A. x E. z A. y
( x A y  ->  y  =  z ) )  <->  ( Rel  A  /\  A. x E. z A. y ( <.
x ,  y >.  e.  A  ->  y  =  z ) ) )
81, 7bitri 264 1  |-  ( Fun 
A  <->  ( Rel  A  /\  A. x E. z A. y ( <. x ,  y >.  e.  A  ->  y  =  z ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384   A.wal 1481   E.wex 1704    e. wcel 1990   <.cop 4183   class class class wbr 4653   Rel wrel 5119   Fun wfun 5882
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-id 5024  df-cnv 5122  df-co 5123  df-fun 5890
This theorem is referenced by:  funimaexg  5975  fvn0ssdmfun  6350  uzrdgfni  12757  dffrege115  38272
  Copyright terms: Public domain W3C validator