MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uzrdgfni Structured version   Visualization version   Unicode version

Theorem uzrdgfni 12757
Description: The recursive definition generator on upper integers is a function. See comment in om2uzrdg 12755. (Contributed by Mario Carneiro, 26-Jun-2013.) (Revised by Mario Carneiro, 4-May-2015.)
Hypotheses
Ref Expression
om2uz.1  |-  C  e.  ZZ
om2uz.2  |-  G  =  ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  C )  |`  om )
uzrdg.1  |-  A  e. 
_V
uzrdg.2  |-  R  =  ( rec ( ( x  e.  _V , 
y  e.  _V  |->  <.
( x  +  1 ) ,  ( x F y ) >.
) ,  <. C ,  A >. )  |`  om )
uzrdg.3  |-  S  =  ran  R
Assertion
Ref Expression
uzrdgfni  |-  S  Fn  ( ZZ>= `  C )
Distinct variable groups:    y, A    x, y, C    y, G    x, F, y
Allowed substitution hints:    A( x)    R( x, y)    S( x, y)    G( x)

Proof of Theorem uzrdgfni
Dummy variables  z  w  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uzrdg.3 . . . . . . . . 9  |-  S  =  ran  R
21eleq2i 2693 . . . . . . . 8  |-  ( z  e.  S  <->  z  e.  ran  R )
3 frfnom 7530 . . . . . . . . . 10  |-  ( rec ( ( x  e. 
_V ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( x F y )
>. ) ,  <. C ,  A >. )  |`  om )  Fn  om
4 uzrdg.2 . . . . . . . . . . 11  |-  R  =  ( rec ( ( x  e.  _V , 
y  e.  _V  |->  <.
( x  +  1 ) ,  ( x F y ) >.
) ,  <. C ,  A >. )  |`  om )
54fneq1i 5985 . . . . . . . . . 10  |-  ( R  Fn  om  <->  ( rec ( ( x  e. 
_V ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( x F y )
>. ) ,  <. C ,  A >. )  |`  om )  Fn  om )
63, 5mpbir 221 . . . . . . . . 9  |-  R  Fn  om
7 fvelrnb 6243 . . . . . . . . 9  |-  ( R  Fn  om  ->  (
z  e.  ran  R  <->  E. w  e.  om  ( R `  w )  =  z ) )
86, 7ax-mp 5 . . . . . . . 8  |-  ( z  e.  ran  R  <->  E. w  e.  om  ( R `  w )  =  z )
92, 8bitri 264 . . . . . . 7  |-  ( z  e.  S  <->  E. w  e.  om  ( R `  w )  =  z )
10 om2uz.1 . . . . . . . . . . 11  |-  C  e.  ZZ
11 om2uz.2 . . . . . . . . . . 11  |-  G  =  ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  C )  |`  om )
12 uzrdg.1 . . . . . . . . . . 11  |-  A  e. 
_V
1310, 11, 12, 4om2uzrdg 12755 . . . . . . . . . 10  |-  ( w  e.  om  ->  ( R `  w )  =  <. ( G `  w ) ,  ( 2nd `  ( R `
 w ) )
>. )
1410, 11om2uzuzi 12748 . . . . . . . . . . 11  |-  ( w  e.  om  ->  ( G `  w )  e.  ( ZZ>= `  C )
)
15 fvex 6201 . . . . . . . . . . 11  |-  ( 2nd `  ( R `  w
) )  e.  _V
16 opelxpi 5148 . . . . . . . . . . 11  |-  ( ( ( G `  w
)  e.  ( ZZ>= `  C )  /\  ( 2nd `  ( R `  w ) )  e. 
_V )  ->  <. ( G `  w ) ,  ( 2nd `  ( R `  w )
) >.  e.  ( (
ZZ>= `  C )  X. 
_V ) )
1714, 15, 16sylancl 694 . . . . . . . . . 10  |-  ( w  e.  om  ->  <. ( G `  w ) ,  ( 2nd `  ( R `  w )
) >.  e.  ( (
ZZ>= `  C )  X. 
_V ) )
1813, 17eqeltrd 2701 . . . . . . . . 9  |-  ( w  e.  om  ->  ( R `  w )  e.  ( ( ZZ>= `  C
)  X.  _V )
)
19 eleq1 2689 . . . . . . . . 9  |-  ( ( R `  w )  =  z  ->  (
( R `  w
)  e.  ( (
ZZ>= `  C )  X. 
_V )  <->  z  e.  ( ( ZZ>= `  C
)  X.  _V )
) )
2018, 19syl5ibcom 235 . . . . . . . 8  |-  ( w  e.  om  ->  (
( R `  w
)  =  z  -> 
z  e.  ( (
ZZ>= `  C )  X. 
_V ) ) )
2120rexlimiv 3027 . . . . . . 7  |-  ( E. w  e.  om  ( R `  w )  =  z  ->  z  e.  ( ( ZZ>= `  C
)  X.  _V )
)
229, 21sylbi 207 . . . . . 6  |-  ( z  e.  S  ->  z  e.  ( ( ZZ>= `  C
)  X.  _V )
)
2322ssriv 3607 . . . . 5  |-  S  C_  ( ( ZZ>= `  C
)  X.  _V )
24 xpss 5226 . . . . 5  |-  ( (
ZZ>= `  C )  X. 
_V )  C_  ( _V  X.  _V )
2523, 24sstri 3612 . . . 4  |-  S  C_  ( _V  X.  _V )
26 df-rel 5121 . . . 4  |-  ( Rel 
S  <->  S  C_  ( _V 
X.  _V ) )
2725, 26mpbir 221 . . 3  |-  Rel  S
28 fvex 6201 . . . . . 6  |-  ( 2nd `  ( R `  ( `' G `  v ) ) )  e.  _V
29 eqeq2 2633 . . . . . . . 8  |-  ( w  =  ( 2nd `  ( R `  ( `' G `  v )
) )  ->  (
z  =  w  <->  z  =  ( 2nd `  ( R `
 ( `' G `  v ) ) ) ) )
3029imbi2d 330 . . . . . . 7  |-  ( w  =  ( 2nd `  ( R `  ( `' G `  v )
) )  ->  (
( <. v ,  z
>.  e.  S  ->  z  =  w )  <->  ( <. v ,  z >.  e.  S  ->  z  =  ( 2nd `  ( R `  ( `' G `  v ) ) ) ) ) )
3130albidv 1849 . . . . . 6  |-  ( w  =  ( 2nd `  ( R `  ( `' G `  v )
) )  ->  ( A. z ( <. v ,  z >.  e.  S  ->  z  =  w )  <->  A. z ( <. v ,  z >.  e.  S  ->  z  =  ( 2nd `  ( R `  ( `' G `  v ) ) ) ) ) )
3228, 31spcev 3300 . . . . 5  |-  ( A. z ( <. v ,  z >.  e.  S  ->  z  =  ( 2nd `  ( R `  ( `' G `  v ) ) ) )  ->  E. w A. z (
<. v ,  z >.  e.  S  ->  z  =  w ) )
331eleq2i 2693 . . . . . . 7  |-  ( <.
v ,  z >.  e.  S  <->  <. v ,  z
>.  e.  ran  R )
34 fvelrnb 6243 . . . . . . . 8  |-  ( R  Fn  om  ->  ( <. v ,  z >.  e.  ran  R  <->  E. w  e.  om  ( R `  w )  =  <. v ,  z >. )
)
356, 34ax-mp 5 . . . . . . 7  |-  ( <.
v ,  z >.  e.  ran  R  <->  E. w  e.  om  ( R `  w )  =  <. v ,  z >. )
3633, 35bitri 264 . . . . . 6  |-  ( <.
v ,  z >.  e.  S  <->  E. w  e.  om  ( R `  w )  =  <. v ,  z
>. )
3713eqeq1d 2624 . . . . . . . . . . . 12  |-  ( w  e.  om  ->  (
( R `  w
)  =  <. v ,  z >.  <->  <. ( G `
 w ) ,  ( 2nd `  ( R `  w )
) >.  =  <. v ,  z >. )
)
38 fvex 6201 . . . . . . . . . . . . 13  |-  ( G `
 w )  e. 
_V
3938, 15opth1 4944 . . . . . . . . . . . 12  |-  ( <.
( G `  w
) ,  ( 2nd `  ( R `  w
) ) >.  =  <. v ,  z >.  ->  ( G `  w )  =  v )
4037, 39syl6bi 243 . . . . . . . . . . 11  |-  ( w  e.  om  ->  (
( R `  w
)  =  <. v ,  z >.  ->  ( G `  w )  =  v ) )
4110, 11om2uzf1oi 12752 . . . . . . . . . . . 12  |-  G : om
-1-1-onto-> ( ZZ>= `  C )
42 f1ocnvfv 6534 . . . . . . . . . . . 12  |-  ( ( G : om -1-1-onto-> ( ZZ>= `  C )  /\  w  e.  om )  ->  ( ( G `
 w )  =  v  ->  ( `' G `  v )  =  w ) )
4341, 42mpan 706 . . . . . . . . . . 11  |-  ( w  e.  om  ->  (
( G `  w
)  =  v  -> 
( `' G `  v )  =  w ) )
4440, 43syld 47 . . . . . . . . . 10  |-  ( w  e.  om  ->  (
( R `  w
)  =  <. v ,  z >.  ->  ( `' G `  v )  =  w ) )
45 fveq2 6191 . . . . . . . . . . 11  |-  ( ( `' G `  v )  =  w  ->  ( R `  ( `' G `  v )
)  =  ( R `
 w ) )
4645fveq2d 6195 . . . . . . . . . 10  |-  ( ( `' G `  v )  =  w  ->  ( 2nd `  ( R `  ( `' G `  v ) ) )  =  ( 2nd `  ( R `
 w ) ) )
4744, 46syl6 35 . . . . . . . . 9  |-  ( w  e.  om  ->  (
( R `  w
)  =  <. v ,  z >.  ->  ( 2nd `  ( R `  ( `' G `  v ) ) )  =  ( 2nd `  ( R `
 w ) ) ) )
4847imp 445 . . . . . . . 8  |-  ( ( w  e.  om  /\  ( R `  w )  =  <. v ,  z
>. )  ->  ( 2nd `  ( R `  ( `' G `  v ) ) )  =  ( 2nd `  ( R `
 w ) ) )
49 vex 3203 . . . . . . . . . 10  |-  v  e. 
_V
50 vex 3203 . . . . . . . . . 10  |-  z  e. 
_V
5149, 50op2ndd 7179 . . . . . . . . 9  |-  ( ( R `  w )  =  <. v ,  z
>.  ->  ( 2nd `  ( R `  w )
)  =  z )
5251adantl 482 . . . . . . . 8  |-  ( ( w  e.  om  /\  ( R `  w )  =  <. v ,  z
>. )  ->  ( 2nd `  ( R `  w
) )  =  z )
5348, 52eqtr2d 2657 . . . . . . 7  |-  ( ( w  e.  om  /\  ( R `  w )  =  <. v ,  z
>. )  ->  z  =  ( 2nd `  ( R `  ( `' G `  v )
) ) )
5453rexlimiva 3028 . . . . . 6  |-  ( E. w  e.  om  ( R `  w )  =  <. v ,  z
>.  ->  z  =  ( 2nd `  ( R `
 ( `' G `  v ) ) ) )
5536, 54sylbi 207 . . . . 5  |-  ( <.
v ,  z >.  e.  S  ->  z  =  ( 2nd `  ( R `  ( `' G `  v )
) ) )
5632, 55mpg 1724 . . . 4  |-  E. w A. z ( <. v ,  z >.  e.  S  ->  z  =  w )
5756ax-gen 1722 . . 3  |-  A. v E. w A. z (
<. v ,  z >.  e.  S  ->  z  =  w )
58 dffun5 5901 . . 3  |-  ( Fun 
S  <->  ( Rel  S  /\  A. v E. w A. z ( <. v ,  z >.  e.  S  ->  z  =  w ) ) )
5927, 57, 58mpbir2an 955 . 2  |-  Fun  S
60 dmss 5323 . . . . 5  |-  ( S 
C_  ( ( ZZ>= `  C )  X.  _V )  ->  dom  S  C_  dom  ( ( ZZ>= `  C
)  X.  _V )
)
6123, 60ax-mp 5 . . . 4  |-  dom  S  C_ 
dom  ( ( ZZ>= `  C )  X.  _V )
62 dmxpss 5565 . . . 4  |-  dom  (
( ZZ>= `  C )  X.  _V )  C_  ( ZZ>=
`  C )
6361, 62sstri 3612 . . 3  |-  dom  S  C_  ( ZZ>= `  C )
6410, 11, 12, 4uzrdglem 12756 . . . . . 6  |-  ( v  e.  ( ZZ>= `  C
)  ->  <. v ,  ( 2nd `  ( R `  ( `' G `  v )
) ) >.  e.  ran  R )
6564, 1syl6eleqr 2712 . . . . 5  |-  ( v  e.  ( ZZ>= `  C
)  ->  <. v ,  ( 2nd `  ( R `  ( `' G `  v )
) ) >.  e.  S
)
6649, 28opeldm 5328 . . . . 5  |-  ( <.
v ,  ( 2nd `  ( R `  ( `' G `  v ) ) ) >.  e.  S  ->  v  e.  dom  S
)
6765, 66syl 17 . . . 4  |-  ( v  e.  ( ZZ>= `  C
)  ->  v  e.  dom  S )
6867ssriv 3607 . . 3  |-  ( ZZ>= `  C )  C_  dom  S
6963, 68eqssi 3619 . 2  |-  dom  S  =  ( ZZ>= `  C
)
70 df-fn 5891 . 2  |-  ( S  Fn  ( ZZ>= `  C
)  <->  ( Fun  S  /\  dom  S  =  (
ZZ>= `  C ) ) )
7159, 69, 70mpbir2an 955 1  |-  S  Fn  ( ZZ>= `  C )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384   A.wal 1481    = wceq 1483   E.wex 1704    e. wcel 1990   E.wrex 2913   _Vcvv 3200    C_ wss 3574   <.cop 4183    |-> cmpt 4729    X. cxp 5112   `'ccnv 5113   dom cdm 5114   ran crn 5115    |` cres 5116   Rel wrel 5119   Fun wfun 5882    Fn wfn 5883   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   omcom 7065   2ndc2nd 7167   reccrdg 7505   1c1 9937    + caddc 9939   ZZcz 11377   ZZ>=cuz 11687
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688
This theorem is referenced by:  uzrdg0i  12758  uzrdgsuci  12759  seqfn  12813
  Copyright terms: Public domain W3C validator