Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dffrege115 Structured version   Visualization version   Unicode version

Theorem dffrege115 38272
Description: If from the the circumstance that  c is a result of an application of the procedure  R to  b, whatever  b may be, it can be inferred that every result of an application of the procedure  R to  b is the same as  c, then we say : "The procedure 
R is single-valued". Definition 115 of [Frege1879] p. 77. (Contributed by RP, 7-Jul-2020.)
Assertion
Ref Expression
dffrege115  |-  ( A. c A. b ( b R c  ->  A. a
( b R a  ->  a  =  c ) )  <->  Fun  `' `' R )
Distinct variable group:    a, b, c, R

Proof of Theorem dffrege115
StepHypRef Expression
1 alcom 2037 . 2  |-  ( A. c A. b ( b R c  ->  A. a
( b R a  ->  a  =  c ) )  <->  A. b A. c ( b R c  ->  A. a
( b R a  ->  a  =  c ) ) )
2 19.21v 1868 . . . . . . 7  |-  ( A. a ( b R c  ->  ( b R a  ->  a  =  c ) )  <-> 
( b R c  ->  A. a ( b R a  ->  a  =  c ) ) )
3 impexp 462 . . . . . . . . 9  |-  ( ( ( b R c  /\  b R a )  ->  a  =  c )  <->  ( b R c  ->  (
b R a  -> 
a  =  c ) ) )
4 vex 3203 . . . . . . . . . . . . 13  |-  b  e. 
_V
5 vex 3203 . . . . . . . . . . . . 13  |-  c  e. 
_V
64, 5brcnv 5305 . . . . . . . . . . . 12  |-  ( b `' `' R c  <->  c `' R b )
7 df-br 4654 . . . . . . . . . . . 12  |-  ( b `' `' R c  <->  <. b ,  c >.  e.  `' `' R )
85, 4brcnv 5305 . . . . . . . . . . . 12  |-  ( c `' R b  <->  b R
c )
96, 7, 83bitr3ri 291 . . . . . . . . . . 11  |-  ( b R c  <->  <. b ,  c >.  e.  `' `' R )
10 vex 3203 . . . . . . . . . . . . 13  |-  a  e. 
_V
114, 10brcnv 5305 . . . . . . . . . . . 12  |-  ( b `' `' R a  <->  a `' R b )
12 df-br 4654 . . . . . . . . . . . 12  |-  ( b `' `' R a  <->  <. b ,  a >.  e.  `' `' R )
1310, 4brcnv 5305 . . . . . . . . . . . 12  |-  ( a `' R b  <->  b R
a )
1411, 12, 133bitr3ri 291 . . . . . . . . . . 11  |-  ( b R a  <->  <. b ,  a >.  e.  `' `' R )
159, 14anbi12ci 734 . . . . . . . . . 10  |-  ( ( b R c  /\  b R a )  <->  ( <. b ,  a >.  e.  `' `' R  /\  <. b ,  c >.  e.  `' `' R ) )
1615imbi1i 339 . . . . . . . . 9  |-  ( ( ( b R c  /\  b R a )  ->  a  =  c )  <->  ( ( <. b ,  a >.  e.  `' `' R  /\  <. b ,  c >.  e.  `' `' R )  ->  a  =  c ) )
173, 16bitr3i 266 . . . . . . . 8  |-  ( ( b R c  -> 
( b R a  ->  a  =  c ) )  <->  ( ( <. b ,  a >.  e.  `' `' R  /\  <. b ,  c >.  e.  `' `' R )  ->  a  =  c ) )
1817albii 1747 . . . . . . 7  |-  ( A. a ( b R c  ->  ( b R a  ->  a  =  c ) )  <->  A. a ( ( <.
b ,  a >.  e.  `' `' R  /\  <. b ,  c >.  e.  `' `' R )  ->  a  =  c ) )
192, 18bitr3i 266 . . . . . 6  |-  ( ( b R c  ->  A. a ( b R a  ->  a  =  c ) )  <->  A. a
( ( <. b ,  a >.  e.  `' `' R  /\  <. b ,  c >.  e.  `' `' R )  ->  a  =  c ) )
2019albii 1747 . . . . 5  |-  ( A. c ( b R c  ->  A. a
( b R a  ->  a  =  c ) )  <->  A. c A. a ( ( <.
b ,  a >.  e.  `' `' R  /\  <. b ,  c >.  e.  `' `' R )  ->  a  =  c ) )
21 alcom 2037 . . . . 5  |-  ( A. c A. a ( (
<. b ,  a >.  e.  `' `' R  /\  <. b ,  c >.  e.  `' `' R )  ->  a  =  c )  <->  A. a A. c ( ( <.
b ,  a >.  e.  `' `' R  /\  <. b ,  c >.  e.  `' `' R )  ->  a  =  c ) )
2220, 21bitri 264 . . . 4  |-  ( A. c ( b R c  ->  A. a
( b R a  ->  a  =  c ) )  <->  A. a A. c ( ( <.
b ,  a >.  e.  `' `' R  /\  <. b ,  c >.  e.  `' `' R )  ->  a  =  c ) )
23 opeq2 4403 . . . . . 6  |-  ( a  =  c  ->  <. b ,  a >.  =  <. b ,  c >. )
2423eleq1d 2686 . . . . 5  |-  ( a  =  c  ->  ( <. b ,  a >.  e.  `' `' R  <->  <. b ,  c
>.  e.  `' `' R
) )
2524mo4 2517 . . . 4  |-  ( E* a <. b ,  a
>.  e.  `' `' R  <->  A. a A. c ( ( <. b ,  a
>.  e.  `' `' R  /\  <. b ,  c
>.  e.  `' `' R
)  ->  a  =  c ) )
26 mo2v 2477 . . . 4  |-  ( E* a <. b ,  a
>.  e.  `' `' R  <->  E. c A. a (
<. b ,  a >.  e.  `' `' R  ->  a  =  c ) )
2722, 25, 263bitr2i 288 . . 3  |-  ( A. c ( b R c  ->  A. a
( b R a  ->  a  =  c ) )  <->  E. c A. a ( <. b ,  a >.  e.  `' `' R  ->  a  =  c ) )
2827albii 1747 . 2  |-  ( A. b A. c ( b R c  ->  A. a
( b R a  ->  a  =  c ) )  <->  A. b E. c A. a (
<. b ,  a >.  e.  `' `' R  ->  a  =  c ) )
29 relcnv 5503 . . . 4  |-  Rel  `' `' R
3029biantrur 527 . . 3  |-  ( A. b E. c A. a
( <. b ,  a
>.  e.  `' `' R  ->  a  =  c )  <-> 
( Rel  `' `' R  /\  A. b E. c A. a (
<. b ,  a >.  e.  `' `' R  ->  a  =  c ) ) )
31 dffun5 5901 . . 3  |-  ( Fun  `' `' R  <->  ( Rel  `' `' R  /\  A. b E. c A. a (
<. b ,  a >.  e.  `' `' R  ->  a  =  c ) ) )
3230, 31bitr4i 267 . 2  |-  ( A. b E. c A. a
( <. b ,  a
>.  e.  `' `' R  ->  a  =  c )  <->  Fun  `' `' R )
331, 28, 323bitri 286 1  |-  ( A. c A. b ( b R c  ->  A. a
( b R a  ->  a  =  c ) )  <->  Fun  `' `' R )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384   A.wal 1481   E.wex 1704    e. wcel 1990   E*wmo 2471   <.cop 4183   class class class wbr 4653   `'ccnv 5113   Rel wrel 5119   Fun wfun 5882
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-fun 5890
This theorem is referenced by:  frege116  38273
  Copyright terms: Public domain W3C validator