| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfinfre | Structured version Visualization version Unicode version | ||
| Description: The infimum of a set of
reals |
| Ref | Expression |
|---|---|
| dfinfre |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-inf 8349 |
. 2
| |
| 2 | df-sup 8348 |
. . 3
| |
| 3 | ssel2 3598 |
. . . . . . . . . 10
| |
| 4 | lenlt 10116 |
. . . . . . . . . . 11
| |
| 5 | vex 3203 |
. . . . . . . . . . . . 13
| |
| 6 | vex 3203 |
. . . . . . . . . . . . 13
| |
| 7 | 5, 6 | brcnv 5305 |
. . . . . . . . . . . 12
|
| 8 | 7 | notbii 310 |
. . . . . . . . . . 11
|
| 9 | 4, 8 | syl6rbbr 279 |
. . . . . . . . . 10
|
| 10 | 3, 9 | sylan2 491 |
. . . . . . . . 9
|
| 11 | 10 | ancoms 469 |
. . . . . . . 8
|
| 12 | 11 | an32s 846 |
. . . . . . 7
|
| 13 | 12 | ralbidva 2985 |
. . . . . 6
|
| 14 | 6, 5 | brcnv 5305 |
. . . . . . . . 9
|
| 15 | vex 3203 |
. . . . . . . . . . 11
| |
| 16 | 6, 15 | brcnv 5305 |
. . . . . . . . . 10
|
| 17 | 16 | rexbii 3041 |
. . . . . . . . 9
|
| 18 | 14, 17 | imbi12i 340 |
. . . . . . . 8
|
| 19 | 18 | ralbii 2980 |
. . . . . . 7
|
| 20 | 19 | a1i 11 |
. . . . . 6
|
| 21 | 13, 20 | anbi12d 747 |
. . . . 5
|
| 22 | 21 | rabbidva 3188 |
. . . 4
|
| 23 | 22 | unieqd 4446 |
. . 3
|
| 24 | 2, 23 | syl5eq 2668 |
. 2
|
| 25 | 1, 24 | syl5eq 2668 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-xp 5120 df-cnv 5122 df-sup 8348 df-inf 8349 df-xr 10078 df-le 10080 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |