MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  negiso Structured version   Visualization version   Unicode version

Theorem negiso 11003
Description: Negation is an order anti-isomorphism of the real numbers, which is its own inverse. (Contributed by Mario Carneiro, 24-Dec-2016.)
Hypothesis
Ref Expression
negiso.1  |-  F  =  ( x  e.  RR  |->  -u x )
Assertion
Ref Expression
negiso  |-  ( F 
Isom  <  ,  `'  <  ( RR ,  RR )  /\  `' F  =  F )

Proof of Theorem negiso
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 negiso.1 . . . . . 6  |-  F  =  ( x  e.  RR  |->  -u x )
2 simpr 477 . . . . . . 7  |-  ( ( T.  /\  x  e.  RR )  ->  x  e.  RR )
32renegcld 10457 . . . . . 6  |-  ( ( T.  /\  x  e.  RR )  ->  -u x  e.  RR )
4 simpr 477 . . . . . . 7  |-  ( ( T.  /\  y  e.  RR )  ->  y  e.  RR )
54renegcld 10457 . . . . . 6  |-  ( ( T.  /\  y  e.  RR )  ->  -u y  e.  RR )
6 recn 10026 . . . . . . . 8  |-  ( x  e.  RR  ->  x  e.  CC )
7 recn 10026 . . . . . . . 8  |-  ( y  e.  RR  ->  y  e.  CC )
8 negcon2 10334 . . . . . . . 8  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x  =  -u y 
<->  y  =  -u x
) )
96, 7, 8syl2an 494 . . . . . . 7  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( x  =  -u y 
<->  y  =  -u x
) )
109adantl 482 . . . . . 6  |-  ( ( T.  /\  ( x  e.  RR  /\  y  e.  RR ) )  -> 
( x  =  -u y 
<->  y  =  -u x
) )
111, 3, 5, 10f1ocnv2d 6886 . . . . 5  |-  ( T. 
->  ( F : RR -1-1-onto-> RR  /\  `' F  =  (
y  e.  RR  |->  -u y ) ) )
1211trud 1493 . . . 4  |-  ( F : RR -1-1-onto-> RR  /\  `' F  =  ( y  e.  RR  |->  -u y ) )
1312simpli 474 . . 3  |-  F : RR
-1-1-onto-> RR
14 ltneg 10528 . . . . . 6  |-  ( ( z  e.  RR  /\  y  e.  RR )  ->  ( z  <  y  <->  -u y  <  -u z
) )
15 negex 10279 . . . . . . 7  |-  -u z  e.  _V
16 negex 10279 . . . . . . 7  |-  -u y  e.  _V
1715, 16brcnv 5305 . . . . . 6  |-  ( -u z `'  <  -u y  <->  -u y  <  -u z
)
1814, 17syl6bbr 278 . . . . 5  |-  ( ( z  e.  RR  /\  y  e.  RR )  ->  ( z  <  y  <->  -u z `'  <  -u y
) )
19 negeq 10273 . . . . . . 7  |-  ( x  =  z  ->  -u x  =  -u z )
2019, 1, 15fvmpt 6282 . . . . . 6  |-  ( z  e.  RR  ->  ( F `  z )  =  -u z )
21 negeq 10273 . . . . . . 7  |-  ( x  =  y  ->  -u x  =  -u y )
2221, 1, 16fvmpt 6282 . . . . . 6  |-  ( y  e.  RR  ->  ( F `  y )  =  -u y )
2320, 22breqan12d 4669 . . . . 5  |-  ( ( z  e.  RR  /\  y  e.  RR )  ->  ( ( F `  z ) `'  <  ( F `  y )  <->  -u z `'  <  -u y
) )
2418, 23bitr4d 271 . . . 4  |-  ( ( z  e.  RR  /\  y  e.  RR )  ->  ( z  <  y  <->  ( F `  z ) `'  <  ( F `  y ) ) )
2524rgen2a 2977 . . 3  |-  A. z  e.  RR  A. y  e.  RR  ( z  < 
y  <->  ( F `  z ) `'  <  ( F `  y ) )
26 df-isom 5897 . . 3  |-  ( F 
Isom  <  ,  `'  <  ( RR ,  RR )  <-> 
( F : RR -1-1-onto-> RR  /\ 
A. z  e.  RR  A. y  e.  RR  (
z  <  y  <->  ( F `  z ) `'  <  ( F `  y ) ) ) )
2713, 25, 26mpbir2an 955 . 2  |-  F  Isom  <  ,  `'  <  ( RR ,  RR )
28 negeq 10273 . . . 4  |-  ( y  =  x  ->  -u y  =  -u x )
2928cbvmptv 4750 . . 3  |-  ( y  e.  RR  |->  -u y
)  =  ( x  e.  RR  |->  -u x
)
3012simpri 478 . . 3  |-  `' F  =  ( y  e.  RR  |->  -u y )
3129, 30, 13eqtr4i 2654 . 2  |-  `' F  =  F
3227, 31pm3.2i 471 1  |-  ( F 
Isom  <  ,  `'  <  ( RR ,  RR )  /\  `' F  =  F )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    = wceq 1483   T. wtru 1484    e. wcel 1990   A.wral 2912   class class class wbr 4653    |-> cmpt 4729   `'ccnv 5113   -1-1-onto->wf1o 5887   ` cfv 5888    Isom wiso 5889   CCcc 9934   RRcr 9935    < clt 10074   -ucneg 10267
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269
This theorem is referenced by:  infrenegsup  11006
  Copyright terms: Public domain W3C validator