![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lenlt | Structured version Visualization version Unicode version |
Description: 'Less than or equal to' expressed in terms of 'less than'. (Contributed by NM, 13-May-1999.) |
Ref | Expression |
---|---|
lenlt |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexr 10085 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | rexr 10085 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | xrlenlt 10103 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 1, 2, 3 | syl2an 494 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-br 4654 df-opab 4713 df-xp 5120 df-cnv 5122 df-xr 10078 df-le 10080 |
This theorem is referenced by: ltnle 10117 letri3 10123 leloe 10124 eqlelt 10125 ne0gt0 10142 lelttric 10144 lenlti 10157 lenltd 10183 ltaddsub 10502 leord1 10555 lediv1 10888 suprleub 10989 dfinfre 11004 infregelb 11007 nnge1 11046 nnnlt1 11050 avgle1 11272 avgle2 11273 nn0nlt0 11319 recnz 11452 btwnnz 11453 prime 11458 indstr 11756 uzsupss 11780 zbtwnre 11786 rpneg 11863 2resupmax 12019 fzn 12357 nelfzo 12475 fzonlt0 12491 fllt 12607 flflp1 12608 modifeq2int 12732 om2uzlt2i 12750 fsuppmapnn0fiub0 12793 suppssfz 12794 leexp2 12915 discr 13001 bcval4 13094 ccatsymb 13366 swrd0 13434 sqrtneglem 14007 harmonic 14591 efle 14848 dvdsle 15032 dfgcd2 15263 lcmf 15346 infpnlem1 15614 pgpssslw 18029 gsummoncoe1 19674 mp2pm2mplem4 20614 dvferm1 23748 dvferm2 23750 dgrlt 24022 logleb 24349 argrege0 24357 ellogdm 24385 dvlog2lem 24398 cxple 24441 cxple3 24447 asinneg 24613 birthdaylem3 24680 ppieq0 24902 chpeq0 24933 chteq0 24934 lgsval2lem 25032 lgsneg 25046 lgsdilem 25049 gausslemma2dlem1a 25090 gausslemma2dlem3 25093 ostth2lem1 25307 ostth3 25327 upgrewlkle2 26502 rusgrnumwwlks 26869 clwlkclwwlklem2a 26899 frgrreg 27252 friendship 27257 nmounbi 27631 nmlno0lem 27648 nmlnop0iALT 28854 supfz 31613 inffz 31614 inffzOLD 31615 fz0n 31616 nn0prpw 32318 leceifl 33398 poimirlem15 33424 poimirlem16 33425 poimirlem17 33426 poimirlem20 33429 poimirlem24 33433 poimirlem31 33440 poimirlem32 33441 ftc1anclem1 33485 nninfnub 33547 ellz1 37330 rencldnfilem 37384 limsup10ex 40005 icccncfext 40100 subsubelfzo0 41336 digexp 42401 |
Copyright terms: Public domain | W3C validator |