MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfiso3 Structured version   Visualization version   Unicode version

Theorem dfiso3 16433
Description: Alternate definition of an isomorphism of a category as a section in both directions. (Contributed by AV, 11-Apr-2017.)
Hypotheses
Ref Expression
dfiso3.b  |-  B  =  ( Base `  C
)
dfiso3.h  |-  H  =  ( Hom  `  C
)
dfiso3.i  |-  I  =  (  Iso  `  C
)
dfiso3.s  |-  S  =  (Sect `  C )
dfiso3.c  |-  ( ph  ->  C  e.  Cat )
dfiso3.x  |-  ( ph  ->  X  e.  B )
dfiso3.y  |-  ( ph  ->  Y  e.  B )
dfiso3.f  |-  ( ph  ->  F  e.  ( X H Y ) )
Assertion
Ref Expression
dfiso3  |-  ( ph  ->  ( F  e.  ( X I Y )  <->  E. g  e.  ( Y H X ) ( g ( Y S X ) F  /\  F ( X S Y ) g ) ) )
Distinct variable groups:    C, g    g, F    g, H    g, I    g, X    g, Y    ph, g
Allowed substitution hints:    B( g)    S( g)

Proof of Theorem dfiso3
StepHypRef Expression
1 dfiso3.b . . 3  |-  B  =  ( Base `  C
)
2 dfiso3.h . . 3  |-  H  =  ( Hom  `  C
)
3 dfiso3.c . . 3  |-  ( ph  ->  C  e.  Cat )
4 dfiso3.i . . 3  |-  I  =  (  Iso  `  C
)
5 dfiso3.x . . 3  |-  ( ph  ->  X  e.  B )
6 dfiso3.y . . 3  |-  ( ph  ->  Y  e.  B )
7 dfiso3.f . . 3  |-  ( ph  ->  F  e.  ( X H Y ) )
8 eqid 2622 . . 3  |-  ( Id
`  C )  =  ( Id `  C
)
9 eqid 2622 . . 3  |-  ( <. X ,  Y >. (comp `  C ) X )  =  ( <. X ,  Y >. (comp `  C
) X )
10 eqid 2622 . . 3  |-  ( <. Y ,  X >. (comp `  C ) Y )  =  ( <. Y ,  X >. (comp `  C
) Y )
111, 2, 3, 4, 5, 6, 7, 8, 9, 10dfiso2 16432 . 2  |-  ( ph  ->  ( F  e.  ( X I Y )  <->  E. g  e.  ( Y H X ) ( ( g ( <. X ,  Y >. (comp `  C ) X ) F )  =  ( ( Id `  C
) `  X )  /\  ( F ( <. Y ,  X >. (comp `  C ) Y ) g )  =  ( ( Id `  C
) `  Y )
) ) )
12 eqid 2622 . . . . . 6  |-  (comp `  C )  =  (comp `  C )
13 dfiso3.s . . . . . 6  |-  S  =  (Sect `  C )
143adantr 481 . . . . . 6  |-  ( (
ph  /\  g  e.  ( Y H X ) )  ->  C  e.  Cat )
156adantr 481 . . . . . 6  |-  ( (
ph  /\  g  e.  ( Y H X ) )  ->  Y  e.  B )
165adantr 481 . . . . . 6  |-  ( (
ph  /\  g  e.  ( Y H X ) )  ->  X  e.  B )
17 simpr 477 . . . . . 6  |-  ( (
ph  /\  g  e.  ( Y H X ) )  ->  g  e.  ( Y H X ) )
187adantr 481 . . . . . 6  |-  ( (
ph  /\  g  e.  ( Y H X ) )  ->  F  e.  ( X H Y ) )
191, 2, 12, 8, 13, 14, 15, 16, 17, 18issect2 16414 . . . . 5  |-  ( (
ph  /\  g  e.  ( Y H X ) )  ->  ( g
( Y S X ) F  <->  ( F
( <. Y ,  X >. (comp `  C ) Y ) g )  =  ( ( Id
`  C ) `  Y ) ) )
201, 2, 12, 8, 13, 14, 16, 15, 18, 17issect2 16414 . . . . 5  |-  ( (
ph  /\  g  e.  ( Y H X ) )  ->  ( F
( X S Y ) g  <->  ( g
( <. X ,  Y >. (comp `  C ) X ) F )  =  ( ( Id
`  C ) `  X ) ) )
2119, 20anbi12d 747 . . . 4  |-  ( (
ph  /\  g  e.  ( Y H X ) )  ->  ( (
g ( Y S X ) F  /\  F ( X S Y ) g )  <-> 
( ( F (
<. Y ,  X >. (comp `  C ) Y ) g )  =  ( ( Id `  C
) `  Y )  /\  ( g ( <. X ,  Y >. (comp `  C ) X ) F )  =  ( ( Id `  C
) `  X )
) ) )
22 ancom 466 . . . 4  |-  ( ( ( F ( <. Y ,  X >. (comp `  C ) Y ) g )  =  ( ( Id `  C
) `  Y )  /\  ( g ( <. X ,  Y >. (comp `  C ) X ) F )  =  ( ( Id `  C
) `  X )
)  <->  ( ( g ( <. X ,  Y >. (comp `  C ) X ) F )  =  ( ( Id
`  C ) `  X )  /\  ( F ( <. Y ,  X >. (comp `  C
) Y ) g )  =  ( ( Id `  C ) `
 Y ) ) )
2321, 22syl6rbb 277 . . 3  |-  ( (
ph  /\  g  e.  ( Y H X ) )  ->  ( (
( g ( <. X ,  Y >. (comp `  C ) X ) F )  =  ( ( Id `  C
) `  X )  /\  ( F ( <. Y ,  X >. (comp `  C ) Y ) g )  =  ( ( Id `  C
) `  Y )
)  <->  ( g ( Y S X ) F  /\  F ( X S Y ) g ) ) )
2423rexbidva 3049 . 2  |-  ( ph  ->  ( E. g  e.  ( Y H X ) ( ( g ( <. X ,  Y >. (comp `  C ) X ) F )  =  ( ( Id
`  C ) `  X )  /\  ( F ( <. Y ,  X >. (comp `  C
) Y ) g )  =  ( ( Id `  C ) `
 Y ) )  <->  E. g  e.  ( Y H X ) ( g ( Y S X ) F  /\  F ( X S Y ) g ) ) )
2511, 24bitrd 268 1  |-  ( ph  ->  ( F  e.  ( X I Y )  <->  E. g  e.  ( Y H X ) ( g ( Y S X ) F  /\  F ( X S Y ) g ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   E.wrex 2913   <.cop 4183   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   Basecbs 15857   Hom chom 15952  compcco 15953   Catccat 16325   Idccid 16326  Sectcsect 16404    Iso ciso 16406
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-sect 16407  df-inv 16408  df-iso 16409
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator