| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eliunxp | Structured version Visualization version Unicode version | ||
| Description: Membership in a union of
Cartesian products. Analogue of elxp 5131 for
nonconstant |
| Ref | Expression |
|---|---|
| eliunxp |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relxp 5227 |
. . . . . 6
| |
| 2 | 1 | rgenw 2924 |
. . . . 5
|
| 3 | reliun 5239 |
. . . . 5
| |
| 4 | 2, 3 | mpbir 221 |
. . . 4
|
| 5 | elrel 5222 |
. . . 4
| |
| 6 | 4, 5 | mpan 706 |
. . 3
|
| 7 | 6 | pm4.71ri 665 |
. 2
|
| 8 | nfiu1 4550 |
. . . 4
| |
| 9 | 8 | nfel2 2781 |
. . 3
|
| 10 | 9 | 19.41 2103 |
. 2
|
| 11 | 19.41v 1914 |
. . . 4
| |
| 12 | eleq1 2689 |
. . . . . . 7
| |
| 13 | opeliunxp 5170 |
. . . . . . 7
| |
| 14 | 12, 13 | syl6bb 276 |
. . . . . 6
|
| 15 | 14 | pm5.32i 669 |
. . . . 5
|
| 16 | 15 | exbii 1774 |
. . . 4
|
| 17 | 11, 16 | bitr3i 266 |
. . 3
|
| 18 | 17 | exbii 1774 |
. 2
|
| 19 | 7, 10, 18 | 3bitr2i 288 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-iun 4522 df-opab 4713 df-xp 5120 df-rel 5121 |
| This theorem is referenced by: raliunxp 5261 dfmpt3 6014 mpt2mptx 6751 fsumcom2 14505 fsumcom2OLD 14506 fprodcom2 14714 fprodcom2OLD 14715 isfunc 16524 gsum2d2 18373 dprd2d2 18443 fsumvma 24938 mpt2mptxf 29477 poimirlem26 33435 dvnprodlem1 40161 |
| Copyright terms: Public domain | W3C validator |