MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfnbgr2 Structured version   Visualization version   Unicode version

Theorem dfnbgr2 26235
Description: Alternate definition of the neighbors of a vertex breaking up the subset relationship of an unordered pair. (Contributed by AV, 15-Nov-2020.) (Revised by AV, 21-Mar-2021.)
Hypotheses
Ref Expression
nbgrval.v  |-  V  =  (Vtx `  G )
nbgrval.e  |-  E  =  (Edg `  G )
Assertion
Ref Expression
dfnbgr2  |-  ( N  e.  V  ->  ( G NeighbVtx  N )  =  {
n  e.  ( V 
\  { N }
)  |  E. e  e.  E  ( N  e.  e  /\  n  e.  e ) } )
Distinct variable groups:    e, E    e, G, n    e, N, n    e, V, n
Allowed substitution hint:    E( n)

Proof of Theorem dfnbgr2
StepHypRef Expression
1 nbgrval.v . . 3  |-  V  =  (Vtx `  G )
2 nbgrval.e . . 3  |-  E  =  (Edg `  G )
31, 2nbgrval 26234 . 2  |-  ( N  e.  V  ->  ( G NeighbVtx  N )  =  {
n  e.  ( V 
\  { N }
)  |  E. e  e.  E  { N ,  n }  C_  e } )
4 vex 3203 . . . . . 6  |-  n  e. 
_V
5 prssg 4350 . . . . . 6  |-  ( ( N  e.  V  /\  n  e.  _V )  ->  ( ( N  e.  e  /\  n  e.  e )  <->  { N ,  n }  C_  e
) )
64, 5mpan2 707 . . . . 5  |-  ( N  e.  V  ->  (
( N  e.  e  /\  n  e.  e )  <->  { N ,  n }  C_  e ) )
76bicomd 213 . . . 4  |-  ( N  e.  V  ->  ( { N ,  n }  C_  e  <->  ( N  e.  e  /\  n  e.  e ) ) )
87rexbidv 3052 . . 3  |-  ( N  e.  V  ->  ( E. e  e.  E  { N ,  n }  C_  e  <->  E. e  e.  E  ( N  e.  e  /\  n  e.  e
) ) )
98rabbidv 3189 . 2  |-  ( N  e.  V  ->  { n  e.  ( V  \  { N } )  |  E. e  e.  E  { N ,  n }  C_  e }  =  {
n  e.  ( V 
\  { N }
)  |  E. e  e.  E  ( N  e.  e  /\  n  e.  e ) } )
103, 9eqtrd 2656 1  |-  ( N  e.  V  ->  ( G NeighbVtx  N )  =  {
n  e.  ( V 
\  { N }
)  |  E. e  e.  E  ( N  e.  e  /\  n  e.  e ) } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   E.wrex 2913   {crab 2916   _Vcvv 3200    \ cdif 3571    C_ wss 3574   {csn 4177   {cpr 4179   ` cfv 5888  (class class class)co 6650  Vtxcvtx 25874  Edgcedg 25939   NeighbVtx cnbgr 26224
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-nbgr 26228
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator