MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nbgrval Structured version   Visualization version   Unicode version

Theorem nbgrval 26234
Description: The set of neighbors of a vertex  V in a graph  G. (Contributed by Alexander van der Vekens, 7-Oct-2017.) (Revised by AV, 24-Oct-2020.) (Revised by AV, 21-Mar-2021.)
Hypotheses
Ref Expression
nbgrval.v  |-  V  =  (Vtx `  G )
nbgrval.e  |-  E  =  (Edg `  G )
Assertion
Ref Expression
nbgrval  |-  ( N  e.  V  ->  ( G NeighbVtx  N )  =  {
n  e.  ( V 
\  { N }
)  |  E. e  e.  E  { N ,  n }  C_  e } )
Distinct variable groups:    e, E    e, G, n    e, N, n    e, V, n
Allowed substitution hint:    E( n)

Proof of Theorem nbgrval
Dummy variables  g 
k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nbgr 26228 . 2  |- NeighbVtx  =  ( g  e.  _V , 
k  e.  (Vtx `  g )  |->  { n  e.  ( (Vtx `  g
)  \  { k } )  |  E. e  e.  (Edg `  g
) { k ,  n }  C_  e } )
2 nbgrval.v . . . 4  |-  V  =  (Vtx `  G )
321vgrex 25882 . . 3  |-  ( N  e.  V  ->  G  e.  _V )
4 fveq2 6191 . . . . . 6  |-  ( g  =  G  ->  (Vtx `  g )  =  (Vtx
`  G ) )
54, 2syl6reqr 2675 . . . . 5  |-  ( g  =  G  ->  V  =  (Vtx `  g )
)
65eleq2d 2687 . . . 4  |-  ( g  =  G  ->  ( N  e.  V  <->  N  e.  (Vtx `  g ) ) )
76biimpac 503 . . 3  |-  ( ( N  e.  V  /\  g  =  G )  ->  N  e.  (Vtx `  g ) )
8 fvex 6201 . . . . 5  |-  (Vtx `  g )  e.  _V
98difexi 4809 . . . 4  |-  ( (Vtx
`  g )  \  { k } )  e.  _V
10 rabexg 4812 . . . 4  |-  ( ( (Vtx `  g )  \  { k } )  e.  _V  ->  { n  e.  ( (Vtx `  g
)  \  { k } )  |  E. e  e.  (Edg `  g
) { k ,  n }  C_  e }  e.  _V )
119, 10mp1i 13 . . 3  |-  ( ( N  e.  V  /\  ( g  =  G  /\  k  =  N ) )  ->  { n  e.  ( (Vtx `  g
)  \  { k } )  |  E. e  e.  (Edg `  g
) { k ,  n }  C_  e }  e.  _V )
124, 2syl6eqr 2674 . . . . . . 7  |-  ( g  =  G  ->  (Vtx `  g )  =  V )
1312adantr 481 . . . . . 6  |-  ( ( g  =  G  /\  k  =  N )  ->  (Vtx `  g )  =  V )
14 sneq 4187 . . . . . . 7  |-  ( k  =  N  ->  { k }  =  { N } )
1514adantl 482 . . . . . 6  |-  ( ( g  =  G  /\  k  =  N )  ->  { k }  =  { N } )
1613, 15difeq12d 3729 . . . . 5  |-  ( ( g  =  G  /\  k  =  N )  ->  ( (Vtx `  g
)  \  { k } )  =  ( V  \  { N } ) )
1716adantl 482 . . . 4  |-  ( ( N  e.  V  /\  ( g  =  G  /\  k  =  N ) )  ->  (
(Vtx `  g )  \  { k } )  =  ( V  \  { N } ) )
18 fveq2 6191 . . . . . . . 8  |-  ( g  =  G  ->  (Edg `  g )  =  (Edg
`  G ) )
19 nbgrval.e . . . . . . . 8  |-  E  =  (Edg `  G )
2018, 19syl6eqr 2674 . . . . . . 7  |-  ( g  =  G  ->  (Edg `  g )  =  E )
2120adantr 481 . . . . . 6  |-  ( ( g  =  G  /\  k  =  N )  ->  (Edg `  g )  =  E )
2221adantl 482 . . . . 5  |-  ( ( N  e.  V  /\  ( g  =  G  /\  k  =  N ) )  ->  (Edg `  g )  =  E )
23 preq1 4268 . . . . . . . 8  |-  ( k  =  N  ->  { k ,  n }  =  { N ,  n }
)
2423sseq1d 3632 . . . . . . 7  |-  ( k  =  N  ->  ( { k ,  n }  C_  e  <->  { N ,  n }  C_  e
) )
2524adantl 482 . . . . . 6  |-  ( ( g  =  G  /\  k  =  N )  ->  ( { k ,  n }  C_  e  <->  { N ,  n }  C_  e ) )
2625adantl 482 . . . . 5  |-  ( ( N  e.  V  /\  ( g  =  G  /\  k  =  N ) )  ->  ( { k ,  n }  C_  e  <->  { N ,  n }  C_  e
) )
2722, 26rexeqbidv 3153 . . . 4  |-  ( ( N  e.  V  /\  ( g  =  G  /\  k  =  N ) )  ->  ( E. e  e.  (Edg `  g ) { k ,  n }  C_  e 
<->  E. e  e.  E  { N ,  n }  C_  e ) )
2817, 27rabeqbidv 3195 . . 3  |-  ( ( N  e.  V  /\  ( g  =  G  /\  k  =  N ) )  ->  { n  e.  ( (Vtx `  g
)  \  { k } )  |  E. e  e.  (Edg `  g
) { k ,  n }  C_  e }  =  { n  e.  ( V  \  { N } )  |  E. e  e.  E  { N ,  n }  C_  e } )
293, 7, 11, 28ovmpt2dv2 6794 . 2  |-  ( N  e.  V  ->  ( NeighbVtx  =  ( g  e.  _V ,  k  e.  (Vtx `  g )  |->  { n  e.  ( (Vtx `  g
)  \  { k } )  |  E. e  e.  (Edg `  g
) { k ,  n }  C_  e } )  ->  ( G NeighbVtx  N )  =  {
n  e.  ( V 
\  { N }
)  |  E. e  e.  E  { N ,  n }  C_  e } ) )
301, 29mpi 20 1  |-  ( N  e.  V  ->  ( G NeighbVtx  N )  =  {
n  e.  ( V 
\  { N }
)  |  E. e  e.  E  { N ,  n }  C_  e } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   E.wrex 2913   {crab 2916   _Vcvv 3200    \ cdif 3571    C_ wss 3574   {csn 4177   {cpr 4179   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652  Vtxcvtx 25874  Edgcedg 25939   NeighbVtx cnbgr 26224
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-nbgr 26228
This theorem is referenced by:  dfnbgr2  26235  dfnbgr3  26236  nbgrel  26238  nbuhgr  26239  nbupgr  26240  nbumgrvtx  26242  nbgr0vtxlem  26251  nbgrnself  26257
  Copyright terms: Public domain W3C validator