| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dftr6 | Structured version Visualization version Unicode version | ||
| Description: A potential definition of transitivity for sets. (Contributed by Scott Fenton, 18-Mar-2012.) |
| Ref | Expression |
|---|---|
| dftr6.1 |
|
| Ref | Expression |
|---|---|
| dftr6 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dftr6.1 |
. . . . 5
| |
| 2 | 1 | elrn 5366 |
. . . 4
|
| 3 | brdif 4705 |
. . . . . 6
| |
| 4 | vex 3203 |
. . . . . . . . 9
| |
| 5 | 4, 1 | brco 5292 |
. . . . . . . 8
|
| 6 | epel 5032 |
. . . . . . . . . 10
| |
| 7 | 1 | epelc 5031 |
. . . . . . . . . 10
|
| 8 | 6, 7 | anbi12i 733 |
. . . . . . . . 9
|
| 9 | 8 | exbii 1774 |
. . . . . . . 8
|
| 10 | 5, 9 | bitri 264 |
. . . . . . 7
|
| 11 | 1 | epelc 5031 |
. . . . . . . 8
|
| 12 | 11 | notbii 310 |
. . . . . . 7
|
| 13 | 10, 12 | anbi12i 733 |
. . . . . 6
|
| 14 | 19.41v 1914 |
. . . . . . 7
| |
| 15 | exanali 1786 |
. . . . . . 7
| |
| 16 | 14, 15 | bitr3i 266 |
. . . . . 6
|
| 17 | 3, 13, 16 | 3bitri 286 |
. . . . 5
|
| 18 | 17 | exbii 1774 |
. . . 4
|
| 19 | exnal 1754 |
. . . 4
| |
| 20 | 2, 18, 19 | 3bitri 286 |
. . 3
|
| 21 | 20 | con2bii 347 |
. 2
|
| 22 | dftr2 4754 |
. 2
| |
| 23 | eldif 3584 |
. . 3
| |
| 24 | 1, 23 | mpbiran 953 |
. 2
|
| 25 | 21, 22, 24 | 3bitr4i 292 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-tr 4753 df-eprel 5029 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 |
| This theorem is referenced by: eltrans 31998 |
| Copyright terms: Public domain | W3C validator |